"The null set of the join of paths" by Arnold A. Eniego and Ian June L. Garces
 

The null set of the join of paths

Document Type

Article

Publication Date

2019

Abstract

For positive integer k, a graph G is said to be k-magic if the edges of G can be labeled with the nonzero elements of Abelian group ℤ k, where ℤ 1= ℤ (the set of integers) and ℤ k is the group of integers mod k≥ 2, so that the sum of the labels of the edges incident to any vertex of G is the same. When this constant sum is 0, we say that G is a zero-sum k-magic graph. The set of all k for which G is a zero-sum k-magic graph is the null set of G. In this paper, we will completely determine the null set of the join of a finite number of paths.

Share

COinS