Document Type
Article
Publication Date
8-23-2019
Abstract
This study addresses the problem of arriving at transitive perfect colorings of a symmetrical pattern P consisting of disjoint congruent symmetric motifs. The pattern P has local symmetries that are not necessarily contained in its global symmetry group G. The usual approach in color symmetry theory is to arrive at perfect colorings of P ignoring local symmetries and considering only elements of G. A framework is presented to systematically arrive at what Roth [Geom. Dedicata (1984), 17, 99–108] defined as a coordinated coloring of P, a coloring that is perfect and transitive under G, satisfying the condition that the coloring of a given motif is also perfect and transitive under its symmetry group. Moreover, in the coloring of P, the symmetry of P that is both a global and local symmetry, effects the same permutation of the colors used to color P and the corresponding motif, respectively.
Recommended Citation
Abila, A.K., De Las Peñas, M.L.A. and Taganap, E. (2019), Local and global color symmetries of a symmetrical pattern. Acta Cryst. A, 75: 730-745. doi:10.1107/S2053273319008763