"Design of Potentiometric Sensor Arrays Using Fisher Information and Ge" by Sarah May Sibug-Torres and Erwin Enriquez
 

Design of Potentiometric Sensor Arrays Using Fisher Information and Genetic Algorithm

Document Type

Conference Proceeding

Publication Date

2019

Abstract

Potentiometric sensor arrays, or electronic tongues, are based on combining cross-sensitive electrodes with multivariate chemometric methods for the simultaneous quantitative determination of analytes in complex liquid media. While cross-sensitivity is recognized as a key feature of electronic tongues, there are currently no a priori theoretical approaches to evaluate which combination of cross-sensitive potentiometric sensors can form an effective array for quantitative multi-ion analysis prior to experimental trial-and-error. In this work, we report the derivation of a Fisher Information-based objective function and its implementation with genetic algorithm for a priori sensor selection in potentiometric sensor arrays. As an illustration of the utility of our method, we demonstrate the design of a potentiometric sensor array for the quantitative determination of Na + , K + , Mg 2+ , and Ca 2+ in blood serum through the screening of a library of more than 300 ion-selective electrode membranes. The results of our analysis suggest that array configurations which are predicted to minimize error can have complex patterns of analyte cross-sensitivities. These alternative array configurations can be difficult to deduce intuitively or to discover by experimental trial-and-error. Simulated sensor array responses modeled by artificial neural networks demonstrate the utility of our our method to rank the performances of sensor array configurations.

Share

COinS