Few-layer-graphene as intercalating agent for spray-pyrolysed fluorine-doped tin oxide transparent conducting electrode

L Go
Lea Macaraig, Ateneo de Manila University
Erwin Enriquez, Ateneo de Manila University

Abstract

In this work, the development of a robust method for the fabrication of a low-cost transparent conducting electrode (TCE) via the addition of graphene in the spray-pyrolysis of fluorine-doped tin oxide (FTO) is explained. Alcoholic suspensions of few-layer-graphene were produced via the liquid exfoliation of graphite in different alcoholic solutions as sonicating solvent. These mixtures were then mixed with ammonium fluoride and tin (II) chloride dihydrate precursors to fabricate graphene/FTO composite through spray pyrolysis. Graphene exfoliated with 50% aqueous ethanol proved to yield improved TCE properties with nearly two-fold enhancement in figure of merit (FOM) measured in terms of the ratio of optical transmittance and sheet resistance. Using optimized spraying conditions, graphene/FTO coatings still yielded slightly higher FOM compared to plain FTO. The increase in FOM is largely attributed to the decrease in sheet resistance with the incorporation of graphene flakes.