#### Title

Riesz Representation Theorem for G-Integrable Distributions

#### Date of Award

2020

#### Document Type

Thesis

#### Degree Name

Master of Science in Mathematics

#### Department

Mathematics

#### First Advisor

Emmanuel A. Cabral, PhD; Mark Anthony C. Tolentino, PhD

#### Abstract

Let the set of functions defined on R with support contained in [a, b] and has deriva- tives of all orders be denoted by D(a, b). Let the space of continuous linear functionals (distributions) defined on D(a, b) be denoted by D0 (a, b). In the sense of distribution, every distribution has a primitive and a derivative (Griffel, 1981). Denote the space of Henstock-integrable functions on [a, b] by E(a, b). Each element of E(a, b) generates a distribution in D0 (a, b). The Banach space G(a, b) ⊂ D0 (a, b) is the completion of the space of distributions generated by each element of E(a, b), with respect to the G-norm defined as kfkG = sup {|F(x)| : a ≤ x ≤ b, F0 = f in the sense of distribution, and F ∈ C0[a, b]} . D.D. Ang, P.Y. Lee, and L.K. Vy (1990) developed an integration on G(a, b) which extends Henstock integration from functions on R to distributions. This study discusses the development of the Riesz Representation theorem for G-integrable distributions on a non-degenerate closed interval [a, b], which involves Henstock integration and distri- bution theory.

#### Recommended Citation

Gealone, A.
(2020). Riesz Representation Theorem for G-Integrable Distributions. Ateneo de Manila University.

https://archium.ateneo.edu/theses-dissertations/532