Mathematical Analysis of a COVID-19 SEIQR Model with Time-Varying Transmission

Document Type

Conference Proceeding

Publication Date



Threshold conditions for a COVID-19 susceptible-exposed-infectious-treated-recovered (SEIQR) model with constant recruitment rate and time-varying transmission rate are studied. Results show that the condition R¯ < 1, with R¯ as the reproduction number of the average system, is sufficient but not necessary to establish the local asymptotic stability of the disease-free equilibrium of the system (SEIQR). Furthermore, as long as R¯ < 1, the disease is eradicated regardless of the number of infectious agents at the beginning.