Mixing properties and entropy bounds of a family of Pisot random substitutions

Document Type

Article

Publication Date

2022

Abstract

We consider a two-parameter family of random substitutions and show certain combinatorial and topological properties they satisfy. We establish that they admit recognisable words at every level. As a consequence, we get that the subshifts they define are not topologically mixing. We then show that they satisfy a weaker mixing property using a numeration system arising from a sequence of lengths of inflated words. Moreover, we provide explicit bounds for the corresponding topological entropy in terms of the defining parameters n and p.

Share

COinS