Document Type
Article
Publication Date
7-1-2024
Abstract
In the field of dentistry, the presence of dental calculus is a commonly encountered issue. If not addressed promptly, it has the potential to lead to gum inflammation and eventual tooth loss. Bitewing (BW) images play a crucial role by providing a comprehensive visual representation of the tooth structure, allowing dentists to examine hard-to-reach areas with precision during clinical assessments. This visual aid significantly aids in the early detection of calculus, facilitating timely interventions and improving overall outcomes for patients. This study introduces a system designed for the detection of dental calculus in BW images, leveraging the power of YOLOv8 to identify individual teeth accurately. This system boasts an impressive precision rate of 97.48%, a recall (sensitivity) of 96.81%, and a specificity rate of 98.25%. Furthermore, this study introduces a novel approach to enhancing interdental edges through an advanced image-enhancement algorithm. This algorithm combines the use of a median filter and bilateral filter to refine the accuracy of convolutional neural networks in classifying dental calculus. Before image enhancement, the accuracy achieved using GoogLeNet stands at 75.00%, which significantly improves to 96.11% post-enhancement. These results hold the potential for streamlining dental consultations, enhancing the overall efficiency of dental services.
Recommended Citation
Lin, T.-J.; Lin, Y.-T.; Lin, Y.-J.; Tseng, A.-Y.; Lin, C.-Y.; Lo, L.-T.; Chen, T.-Y.; Chen, S.-L.; Chen, C.-A.; Li, K.-C.; et al. Auxiliary Diagnosis of Dental Calculus Based on Deep Learning and Image Enhancement by Bitewing Radiographs. Bioengineering 2024, 11, 675. https://doi.org/10.3390/bioengineering11070675
Included in
Biomedical Commons, Biomedical Engineering and Bioengineering Commons, Computational Engineering Commons, Diagnosis Commons