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CHARACTERIZING CONVERGENCE CONDITIONS
FOR THE Mα-INTEGRAL

Ian June Luzon Garces* and Abraham Perral Racca**

Abstract. Park, Ryu, and Lee recently defined a Henstock-type
integral, which lies entirely between the McShane and the Hen-
stock integrals. This paper presents two characterizing convergence
conditions for this integral, and derives other known convergence
theorems as corollaries.

1. Introduction

Park, Ryu, and Lee [2] recently defined a Henstock-type integral,
and they call it Mα-integral. Several properties of Mα-integral were
established in [2] and [3]. Most of them parallel the usual properties of
an integral. One of these results is the Saks-Henstock Lemma. Moreover,
by providing examples, it was also shown that Mα-integral lies strictly
between the McShane and the Henstock integrals.

Let α > 0 be a constant, and I = [a, b] a non-degenerate closed and
bounded interval in R. The following terms and notations are from [2].

(1) A partial partition D of I is a finite collection of interval-point pairs
([u, v], ξ) such that the closed intervals [u, v] are non-overlapping,⋃

[u, v] ⊆ I, and ξ ∈ I. If
⋃

[u, v] = I, we call the partition D
simply a partition.

(2) A positive function defined on I is called a gauge on I.
(3) Let δ be a gauge on I, and D = {([u, v], ξ)} a partial partition of

I. If [u, v] ⊆ (ξ − δ(ξ), ξ + δ(ξ)) for all ([u, v], ξ) ∈ D, then we say
that D is a δ-fine McShane partial partition. Moreover, if D is a
McShane partial partition such that ξ ∈ [u, v] for all ([u, v], ξ) ∈ D,
then D is called a δ-fine Henstock partial partition.
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(4) A McShane partition D = {([u, v], ξ)} of I is said to be an Mα-
partition if ∑

([u,v],ξ)∈D

dist(ξ, [u, v]) < α,

where dist(x, J) = inf{|y − x| : y ∈ J}.
(5) Let D = {([u, v], ξ)} be a partial partition on I, and f a real-valued

function defined on I. We write

S(f, D) =
∑

([u,v],ξ)∈D

f(ξ)(v − u).

With these terms and notations, the definition of Mα-integrability
can now be presented.

Definition 1.1 ([2, Definition 2.1]). A function f : I → R is Mα-
integrable if there exists a real number A such that, for each ε > 0, there
is a gauge δ on I such that

|S(f,D)−A| < ε

for each δ-fine Mα-partition D of I. Here, A is called the Mα-integral
of f on I, and we write A =

∫
I f .

This paper presents two characterizing convergence conditions for
this new integral, and derives other known convergence theorems as
corollaries. The paper is outlined as follows. The main theorem and
its corollaries are presented in Section 2, while the proof of the main
theorem is shown in Section 3. The importance of one characterizing
convergence condition is shown by an example in Section 4.

Throughout the discussion, given a set E ⊆ R, we denote Ec its
complement and µ(E) its Lebesgue outer measure.

2. Main theorem and its consequences

Let {fn} be a sequence of Mα-integrable functions on I = [a, b], and
fn(x) → f(x) for all x ∈ I. We say that {fn} is

(1) Mα-convergent in Gordon’s sense if for every ε > 0 there is a
gauge δ on I such that, for each δ-fine Mα-partition D of I, there
corresponds an integer ND > 0 with the following property:∣∣∣∣S(fn, D)−

∫

I
fn

∣∣∣∣ < ε for all n ≥ ND.
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(2) Mα-convergent to f in Bartle’s sense if for every ε > 0 there
corresponds an integer Nε > 0 such that if n ≥ Nε there is gauge
δn on I such that, for each δn-fine Mα-partition D of I,

|S(fn, D)− S(f,D)| < ε.

(3) equi-integrable if for every ε > 0 there is a gauge δ on I such that
if D is any δ-fine Mα-partition of I, then∣∣∣∣S(fn, D)−

∫

I
fn

∣∣∣∣ < ε for all n.

(3) dominated if there are Mα-integrable functions g and h on I such
that g(x) ≤ fn(x) ≤ h(x) for all x ∈ I and for all n.

(4) monotone if either fn(x) ≤ fn+1(x) for all x ∈ I and for all n, or
fn(x) ≥ fn+1(x) for all x ∈ I and for all n.

We now present the main theorem of the paper, whose proof is post-
poned to the next section.

Theorem 2.1. Let {fn} be a sequence of Mα-integrable functions on
I such that fn(x) → f(x) for all x ∈ I. Then the following statements
are equivalent:

(i) f is Mα-integrable on I, and
∫

I
f = lim

n→∞

∫

I
fn.

(ii) {fn} is Mα-convergent in Gordon’s sense on I.
(iii) {fn} is Mα-convergent to f in Bartle’s sense on I.

Observe that an equi-integrable sequence is a special type of Mα-
convergent sequence in Gordon’s sense. Thus, the following corollary is
an immediate consequence of our main theorem.

Corollary 2.2 (Equi-integrability). Let {fn} be a sequence of Mα-
integrable functions on I such that fn(x) → f(x) for all x ∈ I. If {fn}
is an equi-integrable sequence, then f is Mα-integrable on I, and∫

I
f = lim

n→∞

∫

I
fn.

We now prove that a dominated sequence and a monotone sequence
are special types of equi-integrable sequence. Following [1, Theorem
9.13(b)], every nonnegative Mα-integrable function on I is also McShane
integrable there, and their integrals are equal. We use this fact in the
proofs of the following corollaries.
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Corollary 2.3 (Dominated Convergence Theorem). Let {fn} be a
sequence of Mα-integrable functions on I such that fn(x) → f(x) for all
x ∈ I. If {fn} is a dominated sequence, then it is equi-integrable on I.
Consequently, the function f is Mα-integrable on I, and

∫

I
f = lim

n→∞

∫

I
fn.

Proof. It is not difficult to verify that |fn − fm| ≤ h− g on I and for
all m,n. Let ε > 0 be given.

The function ϕ = h− g is Mα-integrable function on I, and so there
exists a gauge δϕ on I such that if D is a δϕ-fine Mα-partition of I, then

∣∣∣∣S(ϕ,D)−
∫

I
ϕ

∣∣∣∣ < ε.

Since it is nonnegative, the function ϕ is also McShane integrable on I,
which implies that the function Φ(x) =

∫ x
a ϕ is absolutely continuous

on I; that is, there exists a number η > 0 such that if {[ai, bi] : i =
1, 2, . . . ,m} is a finite collection of closed intervals in [a, b] with

∑m
i=1(bi−

ai) < η, then
m∑

i=1

|Φ(bi)− Φ(ai)| < ε.

Furthermore, by Egorov’s Theorem [1, Theorem 2.13], there exists an
open set O ⊂ I such that µ(O) < η and fn converges uniformly to f on
I \O. Choose an integer N > 0 such that

|fn(x)− fm(x)| < ε

for all m,n ≥ N and for all x ∈ I \O.
Define a gauge δ1 on I as follows:

δ1(x) =
{

δϕ(x) if x ∈ I \O
min{δϕ(x), dist(x,Oc)} if x ∈ O.

Consider a δ1-fine Mα-partition D of I, and integers m, n ≥ N . Let D1

be the subset of D that has tags in I \ O, and let D2 = D \D1. Also,
let I1 =

⋃{[u, v] : ([u, v], ξ) ∈ D1} and I2 =
⋃{[u, v] : ([u, v], ξ) ∈ D2}.

Using Saks-Henstock Lemma [2, Lemma 2.5] and the fact that µ(I2) < η,
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we obtain

|S(fn, D)− S(fm, D)|
≤ |S(fn, D1)− S(fm, D1)|+ |S(fm, D2)− S(fm, D2)|
< εµ(I1) + S(ϕ,D2)

≤ ε(b− a) +
∣∣∣∣S(ϕ,D2)−

∫

I2

ϕ

∣∣∣∣ +
∑

([u,v],ξ)∈D2

|Φ(v)− Φ(u)|

< ε(b− a) + 2ε

and∣∣∣∣
∫

I
fn −

∫

I
fm

∣∣∣∣ ≤
∣∣∣∣
∫

I1

fn − S(fn, D1)
∣∣∣∣ +

∣∣∣∣
∫

I2

fn − S(fn, D2)
∣∣∣∣

+
∣∣∣∣
∫

I1

fm − S(fm, D1)
∣∣∣∣ +

∣∣∣∣
∫

I2

fm − S(fm, D2)
∣∣∣∣

+ |S(fn, D)− S(fm, D)|
< 6ε + ε(b− a).

Since each fn is Mα-integrable on I, there exists a gauge δ ≤ δ1 on I
such that if D is any δ-fine Mα-partition of I, then∣∣∣∣S(fn, D)−

∫

I
fn

∣∣∣∣ < ε

for 1 ≤ n ≤ N , and∣∣∣∣S(fn, D)−
∫

I
fn

∣∣∣∣

≤ |S(fn, D)− S(fN , D)|+
∣∣∣∣S(fN , D)−

∫

I
fN

∣∣∣∣ +
∣∣∣∣
∫

I
fN −

∫

I
fn

∣∣∣∣
< 9ε + 2ε(b− a)

for n > N . Therefore, the sequence {fn} is equi-integrable on I, and
the rest of the corollary follows from Corollary 2.2.

Corollary 2.4 (Monotone Convergence Theorem). Let {fn} be a
sequence of Mα-integrable functions on I such that fn(x) → f(x) for all
x ∈ I. If {fn} is a monotone sequence and lim

n→∞
∫
I fn < ∞, then {fn} is

equi-integrable on I. Consequently, the function f is Mα-integrable on
I, and ∫

I
f = lim

n→∞

∫

I
fn.
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Proof. Assume that {fn} is nondecreasing. The proof for the case
when {fn} is non-increasing is similar. Then, for each n, the function
fn − f1 is nonnegative and Mα-integrable on I. It follows that each
function fn− f1 is McShane integrable on I. Since (fn− f1) ↗ (f − f1)
and lim

n→∞
∫
I(fn − f1) < ∞, by the Monotone Convergence Theorem for

McShane Integral [1, Corollary 13.4], the function f − f1 is McShane
integrable (and so Mα-integrable) on I. Thus, the function f is Mα-
integrable on I. Since f1(x) ≤ fn(x) ≤ f(x) for all x ∈ I and for all n,
applying Corollary 2.3 completes the proof.

3. Proof of the main theorem

We will use the following lemma.

Lemma 3.1. Let {fn} be a sequence of Mα-integrable functions on
I such that fn(x) → f(x) for all x ∈ I. If {fn} is Mα-convergent in
Gordon’s or Bartle’s sense, then {∫I fn} is a Cauchy sequence in R.

Proof. Suppose {fn} is Mα-convergent in Gordon’s sense on I. Let
ε > 0 be given. Then there exists a gauge δ on I, and we can choose a
particular δ-fine Mα-partition D0 of I such that∣∣∣∣S(fn, D0)−

∫

I
fn

∣∣∣∣ < ε for all n ≥ ND0

for some positive integer ND0 , as guaranteed in the definition of Mα-
convergent sequence in Gordon’s sense. Since D0 is finite and fn(x) →
f(x) for all x ∈ I, there exists an integer N ≥ ND0 such that

|S(fn, D0)− S(fm, D0)| < ε for all m,n ≥ N,

which implies that∣∣∣∣
∫

I
fn −

∫

I
fm

∣∣∣∣

≤
∣∣∣∣
∫

I
fn − S(fn, D0)

∣∣∣∣ + |S(fn, D0)− S(fm, D0)|+
∣∣∣∣S(fm, D0)−

∫

I
fm

∣∣∣∣
< 3ε.

Thus,
{∫

I fn

}
is a Cauchy sequence in R.

On the other hand, suppose {fn} is Mα-convergent to f in Bartle’s
sense on I. Let ε > 0 be given, and let Nε be the positive integer
guaranteed by the definition of Mα-convergence in Bartle’s sense. If m
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and n are integers such that m, n ≥ Nε, then there exist gauges δm and
δn on I such that, for every δm-fine Mα-partition Dm of I, we have

|S(fm, Dm)− S(f, Dm)| < ε,

and, for every δn-fine Mα-partition Dn of I, we have

|S(fn, Dn)− S(f,Dn)| < ε.

Furthermore, since fm and fn are Mα-integrable on I, there exist gauges
δ′m, δ′n on I such that, for every δ′m-fine Mα-partition D′

m of I,
∣∣∣∣S(fm, D′

m)−
∫

I
fm

∣∣∣∣ < ε

and, for every δ′n-fine Mα-partition D′
n of I,

∣∣∣∣S(fn, D′
n)−

∫

I
fn

∣∣∣∣ < ε.

Set δε(x) = min{δm(x), δn(x), δ′m(x), δ′n(x)} for x ∈ I. Therefore, if D is
δε-fine Mα-partition of I, then

∣∣∣∣
∫

I
fn −

∫

I
fm

∣∣∣∣ ≤
∣∣∣∣
∫

I
fn − S(fn, D)

∣∣∣∣ + |S(fn, D)− S(f,D)|

+|S(f,D)− S(fm, D)|+
∣∣∣∣S(fm, D)−

∫

I
fm

∣∣∣∣
< 4ε,

and so
{∫

I fn

}
is a Cauchy sequence in R.

We are now ready to prove the Main Theorem (Theorem 2.1). We
break the proof into four parts.

(i) =⇒ (ii). Suppose that f is Mα-integrable on I, and
∫

I
f = lim

n→∞

∫

I
fn.

Let ε > 0 be given. Then there is an integer N > 0 such that
∣∣∣∣
∫

I
f −

∫

I
fn

∣∣∣∣ <
ε

3
for all n ≥ N,

and there exists a gauge δ on I such that if D is a δ-fine Mα-partition
of I, then ∣∣∣∣S(f, D)−

∫

I
f

∣∣∣∣ <
ε

3
.
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Since each such D is finite and since fn(x) → f(x) for all x ∈ I, we can
choose for each D an integer ND ≥ N such that

|S(fn, D)− S(f,D)| < ε

3
for all n ≥ ND.

Thus, for every integer n ≥ ND, we have
∣∣∣∣S(fn, D)−

∫

I
fn

∣∣∣∣

≤ |S(fn, D)− S(f, D)|+
∣∣∣∣S(f, D)−

∫

I
f

∣∣∣∣ +
∣∣∣∣
∫

I
f −

∫

I
fn

∣∣∣∣
< ε,

and so {fn} is Mα-convergent in Gordon’s sense on I.

(ii) =⇒ (i). Suppose that {fn} is Mα-convergent in Gordon’s sense
on I. By Lemma 3.1, the sequence

{∫
I fn

}
is Cauchy in R, and so it

converges to some real number A. Let ε > 0 be given. Then there exists
an integer N > 0 such that

∣∣∣∣
∫

I
fn −A

∣∣∣∣ <
ε

3
for all n ≥ N,

and, as guaranteed in the definition of Mα-convergence in Gordon’s
sense, there exists a gauge δ on I such that if D is a δ-fine Mα-partition
of I, then ∣∣∣∣

∫

I
fn − S(fn, D)

∣∣∣∣ <
ε

3
for all n ≥ ND

for some integer ND ≥ N . Since each such D is finite and since fn(x) →
f(x) for all x ∈ I, there is an integer n1 ≥ ND such that

|S(f, D)− S(fn1 , D)| < ε

3
.

Therefore, if D is any δ-fine Mα-partition of I, then

|S(f,D)−A|

≤ |S(f,D)− S(fn1 , D)|+
∣∣∣∣S(fn1 , D)−

∫

I
fn1

∣∣∣∣ +
∣∣∣∣
∫

I
fn1 −A

∣∣∣∣
< ε,

which implies that f is Mα-integrable to A on I, and
∫

I
f = A = lim

n→∞

∫

I
fn.
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(i) =⇒ (iii). Suppose that f is Mα-integrable on I, and∫

I
f = lim

n→∞

∫

I
fn.

Let ε > 0 be given. Then there is an integer N > 0 such that∣∣∣∣
∫

I
f −

∫

I
fn

∣∣∣∣ <
ε

3
for all n ≥ N.

Since fn is Mα-integrable on I, there is a gauge γn on I such that, for
every γn-fine Mα-partition Dn of I,∣∣∣∣S(fn, Dn)−

∫

I
fn

∣∣∣∣ <
ε

3
.

Since f is Mα-integrable on I, there is a gauge δ on I such that, for
every δ-fine Mα-partition D of I,∣∣∣∣S(f, D)−

∫

I
f

∣∣∣∣ <
ε

3
.

Let δn = min{δ, γn}. For n ≥ N , if D is δn-fine Mα-partition of I, then

|S(fn, D)− S(f, D)| ≤
∣∣∣∣S(fn, D)−

∫

I
fn

∣∣∣∣ +
∣∣∣∣
∫

I
fn −

∫

I
f

∣∣∣∣

+
∣∣∣∣
∫

I
f − S(f,D)

∣∣∣∣
< ε,

which implies that {fn} is Mα-convergent to f in Bartle’s sense on I.

(iii) =⇒ (i). Suppose that {fn} is Mα-convergent to f in Bartle’s sense
on I. By Lemma 3.1, the sequence

{∫
I fn

}
is Cauchy in R, and so it

converges to some real number A. Let ε > 0 be given. Then there exists
an integer Nε > 0 such that∣∣∣∣

∫

I
fNε −A

∣∣∣∣ <
ε

3
,

and there is a gauge δNε on I such that, for every δNε-fine Mα-partition
D of I, we have

|S(f, D)− S(fNε , D)| < ε

3
.

Moreover, since fNε is Mα-integrable on I, there is a gauge γNε on I
such that, for every γNε-fine Mα-partition D of I,∣∣∣∣S(fNε , D)−

∫

I
fNε

∣∣∣∣ <
ε

3
.
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Let δε(·) = min{δNε(·), γNε(·)}. If D is δε-fine Mα-partition of I, then

|S(f, D)−A|

≤ |S(f, D)− S(fNε , D)|+
∣∣∣∣S(fNε , D)−

∫

I
fNε

∣∣∣∣ +
∣∣∣∣
∫

I
fNε −A

∣∣∣∣
< ε,

which implies that f is Mα-integrable to A on I, and∫

I
f = A = lim

n→∞

∫

I
fn.

This ends the proof of the theorem.

4. An example

To exhibit the importance of the main theorem, we now give a se-
quence of Mα-integrable functions that is not equi-integrable but is Mα-
convergent to a function in Bartle’s sense.

For each positive integer n, define

fn(x) =





n if x ∈ (1/n, 2/n),
−n if x ∈ (2/n, 3/n),
0 if x ∈ [0, 3] \ {(1/n, 2/n) ∪ (2/n, 3/n)}.

It is not difficult to compute that, for each n, fn is Mα-integrable to 0
on [0, 3].

Claim 1. {fn} is Mα-convergent to 0 in Bartle’s sense.

To see this, it is not difficult to observe that

lim
n→∞ fn(x) = 0 for each x ∈ [0, 3].

Let ε > 0, and choose Nε to be a positive integer such that 4N−1
ε < ε.

For every positive integer n ≥ Nε, we define a gauge on I as follows:

δn(x) =

{
1
2dist(x, {1/n, 2/n, 3/n}) if x /∈ {1/n, 2/n, 3/n},
n−2 otherwise.

If D = {(I, t)} be δn-fine Mα-partition of I, we have

|S(fn, D)| ≤ 4
n
≤ 4

Nε
< ε,

which ends the proof of Claim 1.
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Claim 2. Let 0 < ε < 1. For any gauge δ on [0, 3], there is a δ-
fine partial Mα-partition D̂ = {([u, v], ξ)} of [0, 3] such that, for some
positive integer n,

∣∣∣∣∣S(fn, D̂)−
∫

⋃
[u,v]

fn

∣∣∣∣∣ > ε.

To prove this claim, let δ be an arbitrary gauge on [0, 3], and choose
a positive integer n such that 2n−1 < δ(0). Then D̂ = {([0, 2n−1], 0)} is
δ-fine partial Mα-partition of [0, 3], and

∣∣∣∣∣S(fn, D̂)−
∫

[0,2n−1]
fn

∣∣∣∣∣ = |fn(0)(2/n)− 1| = |0− 1| = 1 > ε,

which ends the proof of the second claim.

Claim 3. {fn} is not equi-integrable.

To prove this, we suppose that {fn} is equi-integrable. Let 0 < ε < 1
be given. Then there is a gauge δ on [0, 3] such that for any δ-fine
Mα-partition D of [0, 3]

∣∣∣∣∣S(fn, D)−
∫

[0,3]
fn

∣∣∣∣∣ < ε for all positive integer n.

By Saks-Henstock Lemma [2, Lemma 2.5], for any δ-fine partial Mα-
partition D̂ = {(Ii, ti)} of [0, 3], we get

∣∣∣∣S(fn, D̂)−
∫

∪Ii

fn

∣∣∣∣ < ε for all positive integer n,

a contradiction to Claim 2.
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