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Sigma chromatic number of graph coronas involving

complete graphs

A D Garciano1, M C T Lagura2 and R M Marcelo3

Ateneo de Manila University, Katipunan Avenue, Quezon City, 1108 Metro Manila, Philippines

E-mail: (agarciano1, rmarcelo3)@ateneo.edu, mariaczarinalagura@yahoo.com2

Abstract. Let c : V (G) → N be a coloring of the vertices in a graph G. For a vertex u in
G, the color sum of u, denoted by σ(u), is the sum of the colors of the neighbors of u. The
coloring c is called a sigma coloring of G if σ(u) 6= σ(v) whenever u and v are adjacent vertices
in G. The minimum number of colors that can be used in a sigma coloring of G is called the
sigma chromatic number of G and is denoted by σ(G). Given two simple, connected graphs G
and H, the corona of G and H, denoted by G �H, is the graph obtained by taking one copy
of G and |V (G)| copies of H and where the ith vertex of G is adjacent to every vertex of the
ith copy of H. In this study, we will show that for a graph G with |V (G)| ≥ 2, and a complete
graph Kn of order n, n ≤ σ(G � Kn) ≤ max {σ(G), n}. In addition, let Pn and Cn denote
a path and a cycle of order n respectively. If m,n ≥ 3, we will prove that σ(Km � Pn) = 2
if and only if m ≤ n − 2

⌊
n
4

⌋
+ 2. If n is even, we show that σ(Km � Cn) = 2 if and only if

m ≤ n − 2
⌈
n
4

⌉
+ 2. Furthermore, in the case that n is odd, we show that σ(Km � Cn) = 3 if

and only if m ≤ H
(⌈

n
4

⌉
− 1, n−

⌈
n
4

⌉)
where H(r, s) denotes the number of lattice points in the

convex hull of points on the plane determined by the integer parameters r and s.

1. Introduction
In this paper, we consider only finite, simple, connected and undirected graphs. Let G be a
graph with vertex and edge sets V (G) and E(G) respectively. For a vertex v ∈ V (G), the
neighborhood of v in G, denoted by NG(v) is the set of all vertices in G that are adjacent to v.
The degree of v, denoted by degG(v) is the cardinality of NG(v). Given two disjoint graphs G
and H, the corona of G and H, denoted by G�H, is the graph obtained by taking one copy of
G and |V (G)| copies of H, and making the ith vertex of G adjacent to every vertex in the ith
copy of H.

The corona of two graphs was introduced in 1970 by Frucht and Harary [3]. Since then,
various types of colorings have been studied on this graph [6], [8]. In 2010, Chartrand, Okamoto
and Zhang [1] introduced a neighbor-distinguishing type of coloring, called sigma coloring of
a graph. Let c : V (G) → N be a coloring of the vertices of a graph G in which two adjacent
vertices may be assigned the same color. The color sum of a vertex v in G is the sum of the
colors of the vertices in NG(v) and is denoted by σ(v). When it is necessary to highlight the
coloring c or the graph G, the color sum of v will also be denoted by σc(v) or σG(v). A coloring
c of G is called a sigma coloring if σ(u) 6= σ(v) whenever u and v are adjacent in G. The least
number of colors required in a sigma coloring of a graph G is called the sigma chromatic number
of G, and is denoted by σ(G).
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A number of researches have focused on the study of the sigma chromatic number of a graph.
Dehgan, Sadeghi and Ahadi [2] showed that the problem of determining whether σ(G) = 2 for a
3-regular graph G is NP-complete. In 2016, Luzon, Ruiz and Tolentino [5] determined the sigma
chromatic number of some families of circulant graphs. On the other hand, Slamin [7] introduced
a coloring similar to sigma coloring where the colors used are those in the set {1, .., k}, for some
positive integer k.

It was shown in [1] that σ(G) ≤ χ(G), where χ(G) is the chromatic number of G. In the same
paper, the sigma chromatic numbers of a path Pn, a cycle Cn and a complete graph Kn were
determined as follows: σ(Pn) = 2 if n ≥ 4, σ(Cn) = 2 if n is even, σ(Cn) = 3 if n is odd and
σ(Kn) = n for any positive integer n. In this paper, sigma colorings of G�Kn and Kn �G are
considered. In particular, when G is either a path Pn or a cycle Cn, the values of σ(G�Kn) will
be determined. Furthermore, necessary and sufficient conditions for σ(Kn�Pn) and σ(Kn�Cn)
to be 2 or 3 will be given.

2. Sigma Color Distribution
Suppose c1 and c2 are sigma colorings on disjoint graphs G and H, respectively. Define
c = (c1, c2) as the coloring of G � H given by c(v) = c1(v), if v ∈ V (G), and c(v) =
c2(v), if v is a vertex in any copy of H. By definition, each copy of H is colored uniformly by
c2.

Lemma 1 Let c1 and c2 be sigma colorings of disjoint graphs G and H respectively, and consider
the coloring c = (c1, c2) on G �H. If u and v are adjacent vertices that are both in G or both
in H, then σc(u) 6= σc(v).

Proof : If u, v ∈ V (H) and uv ∈ E(H), then σc(u) = σc2(u) + x 6= σc2(v) + x = σc(v) where
x = c1(y) for some y ∈ V (G). If u, v ∈ V (G) and uv ∈ E(G), then σc(u) = σc1(u) + k 6=
σc1(v) + k = σc(v) where k =

∑
x∈V (H)

c2(x). �

The above lemma implies that in order to show that c is a sigma coloring of G�H, it suffices
to show that σc(u) 6= σc(v) for any adjacent vertices u ∈ V (G) and v ∈ V (H).

Let c be a coloring of a graph G using distinct colors a and b. For u ∈ V (G), consider the
ordered pair (αu, βu) where αu and βu represent the number of neighbors of u colored a, and
b respectively. Then degG(u) = αu + βu and the color sum of u is σ(u) = αua + βub. If c
is a sigma 2-coloring of G, then for any two adjacent vertices u and v, σ(u) 6= σ(v) , and so,
(αu, βu) 6= (αv, βv). Now, in general, it is possible that σ(u) = σ(v) even if (αu, βu) 6= (αv, βv).
However, it was shown in [4] that by choosing the colors a and b appropriately, it follows that
if (αu, βu) 6= (αv, βv) then σ(u) 6= σ(v). Hence, to show that the color sums of two adjacent
vertices are not equal, it is enough to show that the ordered pairs (αu, βu) and (αv, βv) are not
equal. In particular, such is the case when degG(u) 6= degG(v). Thus, from hereon, we identify
σ(u) with the ordered pair (αu, βu). Also, we will assume that whenever we refer to two colors
a and b, they have the desired property that (αu, βu) 6= (αv, βv) implies σ(u) 6= σ(v) for any two
vertices u and v in the graph.

The above notion may be extended analogously to a sigma 3-coloring of a graph using distinct
colors a,b and d, for instance. In this case, the color sum σ(u) of a vertex u is a triple (αu, βu, γu),
where αu, βu, and γu, are the number of neighbors of u which are colored a, b, and d respectively.
We note that the identification of color sums with tuples is consistent with the equivalence of
sigma colorings and multiset colorings as discussed by Zhang in [9].

Let c be a 2-coloring of a graph G using distinct colors a and b. Then, c induces an ordered
pair (na, nb) where na = |{v ∈ V (G) : c(v) = a}|, nb = |{v ∈ V (G) : c(v) = b}| and na + nb = n.
The pair (na, nb) is called the color distribution associated to c. If c is a sigma coloring, we call
(na, nb) a sigma color distribution associated to c. An ordered pair (x, y) is said to be acceptable
for G if there exists a sigma coloring that induces it.
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In any sigma 2-coloring of a path Pn or an even cycle Cn, at least one in every set of four
consecutive vertices must be assigned a different color. Hence we have the following observations:

Observation 2 Let c be a sigma 2-coloring of Pn using colors a and b where n ≥ 4. Then,⌊
n
4

⌋
≤ na, nb ≤ n−

⌊
n
4

⌋
.

Observation 3 Let c be a sigma 2-coloring of Cn, where n is even, using colors a and b with
n ≥ 4. Then

⌈
n
4

⌉
≤ na, nb ≤ n−

⌈
n
4

⌉
.

Lemma 4 Let Pn be a path with n ≥ 4 and suppose k is a positive integer such that⌊
n
4

⌋
≤ k ≤ n−

⌊
n
4

⌋
. Then, the pair (na, nb) = (k, n− k) is acceptable for Pn.

Proof : Let V (Pn) = {v1, v2, . . . , vn} with edges vivi+1 where 1 ≤ i ≤ n− 1. Define the coloring
c as follows: for vi ∈ V (Pn),

c(vi) =

{
a, if 4 divides i,

b, if 4 does not divide i.

Then, c is a sigma 2-coloring of Pn, where na =
⌊
n
4

⌋
and nb = n−

⌊
n
4

⌋
. Without loss of generality,

we may assume
⌊
n
4

⌋
≤ k ≤

⌊
n
2

⌋
. Consider the sequence s : c(v1), c(v2), ..., c(vn). Define a block

of s as a maximal subsequence consisting of terms of the same color. In particular, we refer to a
block of b’s as a b-block. It follows that the number of b-blocks in Pn is

⌊
n
4

⌋
or
⌊
n
4

⌋
+1. To obtain

a sigma coloring in which na = k, we change the color of k−
⌊
n
4

⌋
vertices colored b into a. This

can be accomplished by changing the color of the second vertex in k−
⌊
n
4

⌋
of the b-blocks in Pn

to a. If n ≡ 0 mod 4, the number of b-blocks is exactly n
4 . It is possible to choose k −

⌊
n
4

⌋
such

vertices since k −
⌊
n
4

⌋
≤ n

4 . If n 6≡ 0 mod 4, the number of b-blocks is
⌊
n
4

⌋
+ 1. Since k ≤

⌊
n
2

⌋
,

we have k −
⌊
n
4

⌋
≤
⌊
n
4

⌋
+ 1. Hence, it is also possible to choose k −

⌊
n
4

⌋
such vertices from the

b-blocks. The resulting new coloring is a sigma 2-coloring in which na = k and nb = n− k. �
The proof of the next lemma is similar to that of the Lemma 4 and is omitted here.

Lemma 5 Let n ≥ 4 be an even integer and k a positive integer such that
⌈
n
4

⌉
≤ k ≤ n−

⌈
n
4

⌉
.

Then, the pair (na, nb) = (k, n− k) is acceptable for Cn.

3. Main Results
This section is divided into two subsections. The first subsection presents the sigma chromatic
number of the corona graph G�Kn, while the second subsection discusses the sigma chromatic
number of Kn �G. We first make the following observation.

Observation 6 Let c be a sigma coloring on G�H where G and H are disjoint graphs. Then
the restriction of c on H is a sigma coloring.

3.1. On the Sigma Chromatic Number of G�Kn

Theorem 7 Let G be a simple connected graph with |V (G)| ≥ 2. Then, n ≤ σ(G � Kn) ≤
max {σ(G), n} where n ≥ 2.

Proof : By Lemma 1, the restriction of any sigma coloring of σ(G�Kn) to Kn is a sigma coloring
of Kn, hence n ≤ σ(G�Kn).

Let σ(G) = m. First, we assume that m ≥ n. Let c1 be a sigma m-coloring of G and c2 be
a sigma n-coloring of Kn such that c2(Kn) ⊆ c1(G). Now let c = (c1, c2) be the m-coloring of
G�Kn . We claim that c is a sigma m-coloring of G�Kn. Let u and v be adjacent vertices in
G�Kn. By Lemma 1, it is enough to show that σ(u) 6= σ(v) where u ∈ V (G) and v ∈ V (Kn).
However, it is clear that deg(v) = n < n+1 ≤ deg(u). Thus, from Section 2, c is a sigma coloring
on G�Kn using m colors. This shows that σ(G�Kn) ≤ m.
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If m < n, we modify c1 and c2 defined above so that c1(G) ⊂ c2(Kn). A similar technique
shows that c is a sigma n-coloring of G�Kn, hence σ(G�Kn) ≤ n. �

The following corollary is a direct consequence of Theorem 7 and the fact that σ(Pn) = 2 for
n ≥ 2 and σ(P3) = 1.

Corollary 8 Let m and n be positive integers with m,n ≥ 2. Then σ(Pm �Kn) = n.

Figure 1 presents a sigma coloring of the corona graph Pm �K4, where m ≥ 2 using distinct
colors a, b, d and e, where a, b, d, e ∈ N. By Corollary 8, σ(Pm �K4) = 4.

. . .

. . .

a b a b

a
d
e

b
a

d
e

b b
a e

d
a

d
e

b

Figure 1. Sigma 4-coloring of Pm �K4 where m ≥ 2

Corollary 9 Let m be a positive integer with m ≥ 3. Then

(i) σ(Cm �Kn) = n if n ≥ 3

(ii) σ(Cm �K2) = σ(Cm).

Proof : By Theorem 7, (i) and (ii) hold if m is even, since σ(Cm) = 2 in this case. Likewise, (i)
holds when m is odd since σ(Cm) = 3.

We now prove (ii) when m is odd. By Theorem 7, 2 ≤ σ(Cm�K2) ≤ 3. Suppose c is a sigma
coloring of Cm �K2. By Observation 6, the restriction of c on K2 must be a sigma coloring of
K2, hence c will assign 2 distinct colors a and b to the vertices of (each copy) of K2. If u and v
are adjacent vertices of Cm, then σ(u) = σCm(u) + a+ b. Similarly, σ(v) = σCm(v) + a+ b. Since
c is a sigma coloring on G �K2, then σ(u) 6= σ(v). This implies that σCm(u) 6= σCm(v), hence
the restriction of c to Cm is also a sigma coloring of Cm. But this implies that at least 3 colors
are needed since m is odd. Hence, σ(Cm �K2) ≥ 3. Thus, σ(Cm �K2) = 3 = σ(Cm). �

3.2. On the Sigma Chromatic Number of Km �G
Theorem 10 Given a graph G and n ≥ 2, then σ(G) ≤ σ(Kn �G) ≤ max {n, σ(G)}.

Proof : By Observation 6, σ(G) ≤ σ(Kn �G). Suppose n ≥ σ(G). Let c1 be a sigma coloring of
Kn using n colors and c2 be a sigma coloring of G using σ(G) colors such that c2(G) ⊂ c1(Kn).
We will show that c = (c1, c2) is a sigma n-coloring of Kn � G. By Lemma 1, we only need to
show that σc(u) 6= σc(v) where u and v are adjacent vertices and u ∈ V (Kn) and v ∈ V (G). But
then deg(u) = (n − 1) + |V (G)| > |V (G)| ≥ deg(v). From Section 2, σ(u) 6= σ(v). This shows
that σ(Kn �G) ≤ n = max {n, σ(G)}.

Now suppose n < σ(G). Let c1 and c2 be as defined previously such that c1(Kn) ⊂ c2(G). A
similar argument as in the previous case shows that c = (c1, c2) is a sigma coloring on Kn �G
and thus, σ(Kn �G) ≤ σ(G). �

The next observation can be easily seen by considering the vertices in Kn.

Observation 11 Let c be a 2-coloring of Km using the colors a and b, and let (ma,mb)
be the color distribution associated to c. For a vertex u ∈ V (Km), recall that αu =
| {v ∈ N(u) : c(v) = a} |. Then, αu = ma − 1 if c(u) = a, or αu = ma if c(u) = b.

Lemma 12 Let n ≥ 3. Using 2 distinct colors, say a and b, the number of distinct acceptable
ordered pairs for a path Pn is given by n−2

⌊
n
4

⌋
+1. For an even cycle Cn, the number of distinct

acceptable ordered pairs is n− 2
⌈
n
4

⌉
+ 1.
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Proof : Suppose c is a sigma 2-coloring of a path G = Pn with n ≥ 3, using distinct colors a and
b. By Lemma 2,

⌊
n
4

⌋
≤ na, nb ≤ n −

⌊
n
4

⌋
and by Lemma 4, any pair (na, nb) is acceptable if it

satisfies this inequality. Since na + nb = n, the total number of acceptable ordered pairs for Pn

is n− 2
⌊
n
4

⌋
+ 1.

A similar argument may be used to show that for a cycle Cn where n is even, the number of
acceptable ordered pairs is n− 2

⌈
n
4

⌉
+ 1. �

Since σ(Km) = m, its value increases without bound as m increases. However, the sigma
chromatic number of its corona with Pn may be kept low. We now present necessary and
sufficient conditions for the sigma chromatic number of Km � Pn to be 2.

Theorem 13 Let m,n ≥ 3 be positive integers. Then σ(Km � Pn) = 2 if and only if
m ≤ n− 2

⌊
n
4

⌋
+ 2.

Proof : (⇒) Suppose σ(Km � Pn) = 2 and let c be a sigma 2-coloring of Km � Pn using a
and b. By Observation 6, the restriction of c to Pn is also a sigma coloring. For 1 ≤ i ≤ m,
let P i

n, denote the ith copy of Pn in Km � Pn and let (nia, n
i
b) denote the color distribution

associated to c on P i
n. If ui is the ith vertex in Km, then by Observation 11, αui = ma − 1 + nia

or ma + nia. But by Lemma 2,
⌊
n
4

⌋
≤ nia ≤ n −

⌊
n
4

⌋
. Thus, min

1≤i≤m
{αui} = ma − 1 +

⌊
n
4

⌋
and max

1≤i≤m
{αui} = ma + n −

⌊
n
4

⌋
. Hence, the total number of possible values of αui for all i,

1 ≤ i ≤ m, is (ma +n−
⌊
n
4

⌋
)− (ma− 1 +

⌊
n
4

⌋
) + 1 = n− 2

⌊
n
4

⌋
+ 2. Since c is a sigma 2-coloring,

each vertex in Km must have a distinct color sum. Hence, the number of possible values of αui

must be greater than or equal to the number of vertices in Km, that is, m ≤ n− 2
⌊
n
4

⌋
+ 2.

(⇐) Suppose m ≤ n − 2
⌊
n
4

⌋
+ 2. We will construct a sigma 2-coloring c on Km � Pn. First,

denote the vertices of Km as u1, u2, . . . , um and the ith copy of Pn in Km � Pn as P i
n where

1 ≤ i ≤ m. By Lemma 12, n− 2
⌊
n
4

⌋
+ 1 gives the number of distinct acceptable ordered pairs

for a path Pn.
If m ≤ n− 2

⌊
n
4

⌋
+ 1, there is a sigma 2-coloring ci on each P i

n which induces a unique color

distribution (nia, n
i
b). Now, if Km has order m = n− 2

⌊
n
4

⌋
+ 2, then for 1 ≤ i ≤ m− 1, we can

define ci on P i
n as in the previous case and let cm be a sigma coloring on Pm

n with a maximum
number of vertices colored a, that is, nma = n−

⌊
n
4

⌋
.

Next, let cm+1 be the coloring on Kn such that all vertices are colored a except for the last
vertex um which is colored b. Let c be the sigma coloring on Km � Pn such that

c(x) =

{
ci(x), if x ∈ P i

n, 1 ≤ i ≤ m
cm+1(x), if x ∈ Km.

We claim that c is a sigma 2-coloring of Km�Pn. Clearly, no two adjacent vertices in P i
n have

the same color sum by our definition of c. If v and ui are adjacent vertices where v ∈ V (P i
n),

and ui ∈ V (Km), then degG(v) is 2 or 3, whereas degG(ui) = m − 1 + n ≥ 5 since m,n ≥ 3.
Hence, σG(v) 6= σG(ui).

So, what is left to show that the color sum of any two vertices in Km are not equal. Suppose
ui and uj are vertices in Km where 1 ≤ i < j ≤ m − 1. By Observation 11, as a vertex in
Km, αui = ma − 1 = αuj . This implies that as a vertex in Km � Pn, αui = ma − 1 + nia and

αuj = ma−1+nja. But since nia 6= nja, then αui 6= αuj . Hence, σ(ui) 6= σ(uj). If m ≤ n−2
⌊
n
4

⌋
+1,

we are done.
Now suppose m = n − 2

⌊
n
4

⌋
+ 2 and consider the last vertex um in Km. Since c(um) = b,

then by Observation 11, as a vertex in Km, αum = ma. Since nma = n −
⌊
n
4

⌋
, then as a

vertex in Km � Pn, we have αum = ma + n −
⌊
n
4

⌋
. Since

⌊
n
4

⌋
≤ nia ≤ n −

⌊
n
4

⌋
, then

αum = ma + n −
⌊
n
4

⌋
≥ ma + nia > ma − 1 + nia = αui for all 1 ≤ i ≤ m. This proves

that c is a sigma 2-coloring of Km � Pn. �
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The next theorem is a counterpart of the previous theorem for the corona of a complete graph
with an even cycle. The proof is analogous.

Theorem 14 Let m ≥ 3 and n ≥ 4 be positive integers where n is even. Then σ(Km � Cn) =
2 if and only if m ≤ n− 2

⌈
n
4

⌉
+ 2.

We now consider sigma colorings on the corona graph Km � Cn, where n is odd. By
Observation 6, a sigma coloring on this graph must be a sigma coloring on Cn, and will thus
require the use of at least 3 colors. As in the case of sigma 2-colorings, if c is a sigma 3 coloring
of a graph G using colors a, b and d, we define a sigma color distribution associated to c as a
triple (na, nb, nd) where na, nb, nd are the numbers of vertices colored a, b and d respectively.
Likewise, a triple (x, y, z) is said to be acceptable for G if there exists sigma 3-coloring which
induces it.

Lemma 15 Let n be an odd integer and n ≥ 3. Suppose c is a sigma 3-coloring of Cn, using
distinct colors a, b and d. Then the following hold: (i) 1 ≤ na, nb, nd ≤ n −

⌈
n
4

⌉
; and (ii)⌈

n
4

⌉
≤ na + nb, na + nd, nb + nd ≤ n− 1.

Proof : Since c is a sigma 3-coloring, then na, nb, nd ≥ 1. Since na + nb = n − nd, then
na + nb ≤ n − 1. Since no four consecutive vertices must have the same color, then
na, nb ≤ n − 1 −

⌊
n−1
4

⌋
= n −

⌈
n
4

⌉
. Similarly, nd ≤ n −

⌈
n
4

⌉
, hence, na + nb = n − nd ≥

⌈
n
4

⌉
.

The other inequalities are similar. �

Lemma 16 Let n be a positive odd integer. Suppose x, y ∈ N and (i) 1 ≤ x, y ≤ n −
⌈
n
4

⌉
, (ii)⌈

n
4

⌉
≤ x+ y ≤ n− 1 and (iii) z = n− x− y. Then, (x, y, z) is acceptable for Cn.

Proof : First, we make two claims.
Claim 1: 1 ≤ z ≤ n−

⌈
n
4

⌉
Proof of Claim 1 : From the assumptions (i) to (iii) above, 1 = n−(n−1) ≤ n−(x+y) ≤ n−

⌈
n
4

⌉
.

Since z = n− (x+ y), then 1 ≤ z ≤ n−
⌈
n
4

⌉
.

Claim 2:
⌈
n
4

⌉
≤ y + z ≤ n− 1 and

⌈
n
4

⌉
≤ x+ z ≤ n− 1

Proof of Claim 2 : From assumption (i),
⌈
n
4

⌉
= n−(n−

⌈
n
4

⌉
) ≤ n−y ≤ n−1. Since x+z = n−y,

then
⌈
n
4

⌉
≤ x+ z ≤ n− 1. Similarly, it can be shown that

⌈
n
4

⌉
≤ y + z ≤ n− 1.

Without loss of generality, we assume that x ≥ y ≥ z. In the following, we will show that
there is a sigma coloring of Cn using distinct colors a, b and d, and with sigma color distribution
(x, y, z). We consider two cases: first, when z = 1 and second, when z ≥ 2.
Case 1: Suppose z = 1. Let V (Cn) = {v1, v2, . . . , vn} where vivi+1 ∈ E(Cn) for 1 ≤ i ≤ n,
where addition is done modulo n. Since z = 1, we pick a vertex, say v1 and assign the color d
to it. Consider the remaining n− 1 vertices v2, . . . , vn. These induce a subgraph isomorphic to
Pn−1. We claim that there is a sigma 2-coloring of this subgraph using colors a and b with color
distribution (x, y). By Lemma 4, such a coloring exists if and only if x and y satisfy⌊

n− 1

4

⌋
≤ x, y ≤ n− 1−

⌊
n− 1

4

⌋
. (1)

Note that since n is odd, then
⌈
n
4

⌉
=
⌊
n−1
4

⌋
+ 1. By assumption (i), we have x ≤ n −

⌈
n
4

⌉
=

n − 1 −
⌊
n−1
4

⌋
. Furthermore, by Claim 2,

⌈
n
4

⌉
≤ x + z = x + 1, hence

⌊
n−1
4

⌋
=
⌈
n
4

⌉
− 1 ≤ x.

This shows that x satisfies the inequality given in inequality (1). A similar proof can be given
to show that

⌊
n
4

⌋
≤ y ≤ n− 1−

⌊
n−1
4

⌋
. Thus, a sigma coloring c′ on the subgraph Pn−1 exists

using colors a and b.
Now consider the 3-coloring c on Cn defined by c(v1) = d and c(vi) = c′(vi) for i 6= 1. Since

c′ is a sigma coloring on Pn−1, then to show that c is a sigma 3-coloring on Cn, it is enough
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to show that σc(vi) 6= σc(vi+1) for i ∈ {n− 1, n, 1, 2}. Equivalently, we need to show that
(αvi , βvi , γvi) 6= (αvi+1 , βvi+1 , γvi+1) for this set of values of i. The values of the indicated triples
are shown in Figure 2.

(αvn−1
, βvn−1

, 0)

(αvn , βvn , 1)
(αv1 , βv1 , 0)

(αv2 , βv2 , 1)

(αv3 , βv3 , 0)
vn−1

vn
v1

v2

v3

d

Figure 2. 3-coloring of Cn with z = 1.

As seen in Figure 2, no triples corresponding to adjacent vertices are equal. Hence, (x, y, 1)
is acceptable for Cn.
Case 2: Assume that z ≥ 2. We make a third claim.
Claim 3: There exist two consecutive values of x′ that satisfy the following.

(i)
⌈y
3

⌉
− 1 ≤ x′ ≤ 3(y + 1)

(ii) x− 3(z − 1) ≤ x′ ≤

{
x−

⌈
z
3

⌉
− 1, if z 6≡ 2 mod 3,

x−
⌈
z
3

⌉
, if z ≡ 2 mod 3.

Proof of Claim 3 : Let r1 =
⌈y
3

⌉
− 1, r2 = 3(y + 1), s1 = x − 3(z − 1), s2 = x −

⌈
z
3

⌉
− 1 if

z 6≡ 2 mod 3, x −
⌈
z
3

⌉
if z ≡ 2 mod 3. Clearly, r1 < r2 and s1 < s2. It is enough to show that

s1 < r2, and r1 < s2, since it will follow that the two closed intervals [r1, r2] and [s1, s2] will
intersect in at least two consecutive integers.

Since n is odd and n = x + y + z, then 4
(x+y+z

4

)
< 4

⌈x+y+z
4

⌉
. By Claim 2, 4

⌈x+y+z
4

⌉
≤

4(y + z). From this, it follows that x − 3(z − 1) < 3(y + 1) or equivalently s1 < r2. Since
x ≥ y ≥ z, then

⌊
n
3

⌋
≥ z, and since z ≥ 2, then n ≥ 7 and x ≥ 3. It follows that⌈y

3

⌉
+
⌈
z
3

⌉
≤
⌈y+z

3

⌉
+1 ≤

⌈x+y+z
3

⌉
≤ x. Thus,

⌈y
3

⌉
−1 ≤ x−

⌈
z
3

⌉
−1 and clearly,

⌈y
3

⌉
−1 < x−

⌈
z
3

⌉
.

We will show that
⌈y
3

⌉
− 1 6= x −

⌈
z
3

⌉
− 1, if z 6≡ 2 mod 3. On the contrary, suppose that⌈y

3

⌉
− 1 = x−

⌈
z
3

⌉
− 1 when z 6≡ 2 mod 3. Then, x =

⌈y
3

⌉
+
⌈
z
3

⌉
≤
⌈x+y+z

3

⌉
. Since 3

⌈y
3

⌉
≤ y + 2

and 3
⌈
z
3

⌉
≤ z+2, we have (y+2)+(z+2) ≥ 3

⌈x+y+z
3

⌉
≥ x+y+z. Thus, x ≤ 4. Since z ≥ 2, then

(x, y, z) ∈ {(3, 3, 3), (4, 4, 3)} . Any one of these ordered triples results to
⌈y
3

⌉
− 1 6= x−

⌈
z
3

⌉
− 1,

a contradiction. This proves Claim 3.
Let x′ satisfy the conditions in Claim 3. We note that we can take x to be odd or even,

as necessary. We will show that there exists a sigma coloring on the subgraph Px′+y induced
by the vertices v1, v2, v3, . . . , vx′+y, using colors a and b and with color distribution (x′, y). By

Lemma 4, such a sigma coloring exists if and only if
⌊
x′+y
4

⌋
≤ x′, y ≤ x′ + y −

⌊
x′+y
4

⌋
. Clearly,

it is enough to show that
⌊
x′+y
4

⌋
≤ x′ and

⌊
x′+y
4

⌋
≤ y.

Let r = y mod 3, where r ∈ {0, 1, 2}.
Case 1: Assume that r = 0. From Claim 3(i), x′ ≥

⌈y
3

⌉
− 1. Since 3|y, x′ ≥ x′+y−3

4 , and since

x′ is an integer, x′ ≥
⌈
x′+y−3

4

⌉
=
⌊
x′+y
4

⌋
.

Case 2: Suppose r 6= 0. By Claim 3(i), x′ ≥
⌈y
3

⌉
− 1 =

(y−r
3 + 1

)
− 1 = y−r

3 . It follows that

x′ ≥ x′+y−r
4 . Since x′ is an integer, then x′ ≥

⌈
x′+y−r

4

⌉
≥
⌊
x′+y
4

⌋
.

A similar proof can be used to show that y ≥
⌈
x′+y
4

⌉
.

Let x′′ = x − x′. Since x′ can be even or odd, x′′ can also be even or odd. Our next goal is
to give a coloring of the remaining x′′+ z vertices of Cn which induce a subgraph isomorphic to
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Px′′+z. We will show that a sigma 2-coloring of Px′′+z exists using the colors a and d with color
distribution (x′′, z). First, we note that from Claim 3, we have

(1) 3(z − 1) ≥ x′′ ≥

{⌈
z
3

⌉
+ 1, if z 6≡ 2 mod 3⌈

z
3

⌉
, if z ≡ 2 mod 3

(2) x′′ ≡ 3(z − 1) mod 2.

Furthermore, note that 3(z − 1) has the same parity as
⌈
z
3

⌉
or
⌈
z
3

⌉
+ 1, depending on the

congruence class of z mod 3. We want to exhibit a sigma 2-coloring of Px′′+z satisfying the
following requirements:

(R1) The endpoints of the path are colored d.

(R2) Immediate neighbors of the endpoints are colored a.

(R3) Between any two consecutive vertices colored d, there is/are 0, 1 or 3 vertices colored a.

(R4) Between any two consecutive vertices colored a, there is/are 0, 1 or 3 vertices colored d.

The requirements R3 and R4 are imposed to ensure that no color strings of the form adda
or daad occur in the coloring of Px′′+z, as such strings give rise to adjacent vertices with equal
color sums. Moreover, these requirements also ensure that in any given string of four consecutive
vertices, not all vertices have the same color.

First, suppose z ≡ 2 mod 3. We want to define a sigma 2-coloring on Px′′+z using colors a and
d with color distribution (x′′, z), for any possible value of x′′ satisfying (1) and (2). From R1,R2,
R3 and R4, the minimum number of vertices that can be colored with a is z−2

3 + 1 =
⌈
z
3

⌉
.

Thus, we can have a sigma coloring with color distribution
(⌈

z
3

⌉
, z
)
. If we replace a string

of the form ddd by dadad we obtain a sigma coloring with color distribution
(⌈

z
3

⌉
+ 2, z

)
. By

replacing other strings of the form ddd by dadad or strings of the form dad by daaad, we
obtain sigma colorings with color distributions

(⌈
z
3

⌉
+ 4, z

)
,
(⌈

z
3

⌉
+ 6, z

)
, . . . (3(z − 1), z) . The

last color distribution corresponds to the color string daaadaaad . . . daaad. Effectively, each of
these possibilities describe a sigma coloring for Px′′+z with color distribution (x′′, z) where x′′

satisfies (1) and (2).
The cases where z ≡ 1 or 0 mod 3 may be dealt with following a similar scheme as the one

above.
Finally, consider the coloring c on Cn induced by the sigma colorings on Px′+y and Px′′+z

(Refer to Figure 3) using the colors a, b and d. We will show that c is a sigma 3-coloring on Cn.

v1 vx′+y u1
ux′′+z

. . . . . .

Coloring of Px′+y

using a and b

Coloring of Px′′+z

using a and d

d a a d

Figure 3. 3-coloring of Cn using colors a, b and d.

Observe that σc(vx′+y) = (α1, β1, 1), σc(u1) = (α2, β2, 0), σc(v1) = (α3, β3, 1) and σc(ux′′+z) =
(α4, β4, 0), for some nonnegative integers αi and βi, 1 ≤ i ≤ 4. Clearly, σc(vx′+y) 6= σc(u1)
and σc(v1) 6= σc(ux′′+z). From the construction, it follows that c is a sigma 3-coloring on Cn.
Furthermore, the associated color distribution is (x, y, z). This proves the lemma. �

By Lemma 16, any set of triples (x, y, z) satisfying (i), (ii) and (iii) of the lemma
is acceptable for Cn. Note that z is completely determined by x + y. Let N =
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{
(x, y) : 1 ≤ x, y ≤ n−

⌈
n
4

⌉
,
⌈
n
4

⌉
≤ x+ y ≤ n− 1

}
. Then N = |N | corresponds to the number

of lattice points in the convex hull of the hexagon with vertices A
(⌈

n
4

⌉
− 1, 1

)
, B

(
1,
⌈
n
4

⌉
− 1
)
,

C
(
1, n−

⌈
n
4

⌉)
, D

(⌈
n
4

⌉
− 1, n−

⌈
n
4

⌉)
, E

(
n−

⌈
n
4

⌉
,
⌈
n
4

⌉
− 1
)

and F
(
n−

⌈
n
4

⌉
, 1
)

(Refer to
Figure 4).

A
(⌈

n
4

⌉
− 1, 1

)
B
(
1,
⌈
n
4

⌉
− 1

)

C
(
1, n−

⌈
n
4

⌉)
D
(⌈

n
4

⌉
− 1, n−

⌈
n
4

⌉)

E
(
n−

⌈
n
4

⌉
,
⌈
n
4

⌉
− 1

)

F
(
n−

⌈
n
4

⌉
, 1
)

Figure 4. Set N

For two nonnegative integers r, s with s ≥ r, let H(r, s) be the number of lattice points in
the convex hull of A′, B′, C ′, D′, E′ and F ′ where A′(r, 0), B′(0, r), C ′(0, s), D′(r, s), E′(s, r) and
F ′(s, 0). Then, H(r, s) = (s+ 1)2 −

(
r+1
2

)
−
(
s−r+1

2

)
. Thus, N = H(r, s) where r =

⌈
n
4

⌉
− 2 and

s = n−
⌈
n
4

⌉
− 1.

We are now ready to prove the last theorem.

Theorem 17 Let m and n be positive integers where m,n ≥ 3 and n is odd. Then,
σ(Km � Cn) = 3 if and only if m ≤ H

(⌈
n
4

⌉
− 1, n−

⌈
n
4

⌉)
.

Proof : (⇒) Let G = Km�Cn and suppose σ(G) = 3. Let c be a sigma 3-coloring of G using the
colors a, b and d. Suppose (r, s, t) is the color distribution induced by c on Km. If v ∈ V (Km),
then restricted to Km, σKm(v) is (r− 1, s, t), (r, s− 1, t) or (r, s, t− 1) according to whether c(v)
is a, b or d respectively. Consider the restriction of c to the copy of Cn that is joined to v in G.
Note that this restriction is a sigma 3-coloring of Cn. If (x, y, z) is the sigma 3-color distribution
on this copy of Cn, then the possible values of σ(v) are as follows:

(x, y, z) + (r − 1, s, t) or (x, y, z) + (r, s− 1, t) or (x, y, z) + (r, s, t− 1) (2)

Note that we can ignore the third component in each triple in (2) since it is
dependent on the first two components. Furthermore, to simplify computations, we
can look at the resulting color sums as translations of (r − 1, s − 1), that is, the
possible values of σ(v) given in (2), can be simplified to (x, y) + (0, 1), (x, y) + (1, 0)
and (x, y) + (1, 1) respectively. The total number of such values corresponds to
H
(⌈

n
4

⌉
− 1, n−

⌈
n
4

⌉)
. Since the vertices in Km should have distinct color sums, then

m ≤ H
(⌈

n
4

⌉
− 1, n−

⌈
n
4

⌉)
.

(⇐) Suppose m = H
(⌈

n
4

⌉
− 1, n−

⌈
n
4

⌉)
. Let A = N ,

B =
{

(x, y) ∈ N :
⌈n

4

⌉
− 1 ≤ x ≤ n−

⌈n
4

⌉
and y = 1, or x = n−

⌈n
4

⌉
and 1 ≤ y ≤

⌈n
4

⌉
− 1
}

and D = {(x, y) ∈ N : x+ y = n− 1}. Then, m = |A|+ |B|+ |D|.
We will now exhibit a sigma 3-coloring on G. First, we color the vertices in Km such that

|A| are colored a, |B| are colored b and |D| are colored d. Next, for each vertex colored a in
Km, assign to the corresponding Cn a sigma coloring with distinct color distribution from A.
Similarly, assign to the corresponding Cn of each vertex colored b (respectively, d) in Km a sigma
coloring with distinct color distribution from B (respectively, D).
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In the succeeding part of the proof, refer to Figure 5 below. From the construction, the
color sums of the vertices in Km colored a correspond to distinct elements of A+ (0, 1) ( region
shaded by horizontal lines). Similarly, the color sums of the vertices in Km colored b correspond
to distinct elements of B + (1, 0) (two perpendicular line segments with a common endpoint).
Finally those colored d have color sums that correspond to the elements of D + (1, 1) (line
segment). Clearly, no differently colored vertices in Km have equal color sums. Furthermore,
the total number of distinct color sums generated by these sets is m.

Figure 5. Color sums in Km � Cn, where n is odd

If m < H
(⌈

n
4

⌉
− 1, n−

⌈
n
4

⌉)
, then we can choose subsets of A, B and D such that the union

has cardinality m, and assign the colors accordingly. Hence, we have σ(Km � Cn) ≤ 3. By
Theorem 10, σ(Km � Cn) ≥ 3. �

4. Conclusion
In this paper, bounds for σ(G � Kn) and σ(Kn � G), for which G is arbitrary, were given.
Consequently the values of σ(Pm � Kn) for m,n ≥ 2 and σ(Cm � Kn) for m ≥ 3 and n ≥ 2
were determined. Moreover, necessary and sufficient conditions for σ(Km � Cn) to be 2 or 3
were given. Determining σ(G � H) and σ(H � G) for other families of graphs G and H are
recommended for further research.
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