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2 Ateneo de Manila University, Quezon City, Philippines

E-mail: jaysondelunatolentino@yahoo.com, rmarcelo@ateneo.edu,
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Abstract. Let k ≥ 2 be an integer and G be a connected graph of order at least 3. A twin
k-edge coloring of G is a proper edge coloring of G that uses colors from Zk and that induces a
proper vertex coloring on G where the color of a vertex v is the sum (in Zk) of the colors of the
edges incident with v. The smallest integer k for which G has a twin k-edge coloring is the twin
chromatic index of G and is denoted by χ′

t(G). In this paper, we determine the twin chromatic
indices of circulant graphs Cn(1, n

2
), and some generalized Petersen graphs such as GP (3s, k),

GP (m, 2), and GP (4s, l) where n ≥ 6 and n ≡ 0 (mod 4), s ≥ 1, k 6≡ 0 (mod 3), m ≥ 3 and
m 6∈ {4, 5}, and l is odd. Moreover, we provide some sufficient conditions for a connected graph
with maximum degree 3 to have twin chromatic index greater than 3.

1. Introduction
Let G = (V,E) be a simple graph. A proper vertex coloring of G is a function from V to a given
set of colors such that adjacent vertices are colored differently. On the other hand, a proper
edge coloring of G is a function from E to a given set of colors such that adjacent edges are
colored differently. The minimum number of colors needed in a proper vertex coloring and a
proper edge coloring of G are the chromatic number and chromatic index of G and are denoted
by χ(G) and χ′(G), respectively. Thus χ(G) ≤ ∆(G) + 1 and χ′(G) ≥ ∆(G), where ∆(G) is the
maximum degree of G.

Aside from the original notions of proper colorings, various graph colorings that use the sum
of colors to induce certain types of vertex colorings have also been studied in the literature.
Some of these studies are the works of Agustin et al. [1] and Slamin [7]. In [1], Agustin et al.
investigated the local edge antimagic coloring of comb product of some graphs and in [7], Slamin
introduced the distance irregular labelling of graphs.

In this paper, we focus on a relatively new kind of graph coloring called the twin edge coloring
which was introduced by Chartrand [9] and was initially studied in [2–4].

Definition 1.1. For a connected graph G of order at least 3, a proper k-edge coloring
c : E(G) → Zk for some integer k ≥ 2 is called a twin k-edge coloring of G if the induced
vertex coloring c′ : V (G)→ Zk defined by

c′(v) =
∑
e∈Ev

c(e) in Zk,
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where Ev is the set of edges of G incident with v, is proper as well. The minimum k for which
G has a twin k-edge coloring is the twin chromatic index of G, denoted by χ′t(G).

Since a twin edge coloring of G is a proper edge coloring of G, χ′t(G) ≥ ∆(G). It has been
shown in [2] that every connected graph of order at least 3 has a twin edge coloring.

In [2], Andrews et al. obtained the twin chromatic indices of paths, cycles, complete graphs,
and complete bipartite graphs. Based on the results in [2], Andrews et al. [3] formulated
Conjecture 1.2 and verified it for permutation graphs of 5-cycle, grids and prisms, and trees
with maximum degree at most 6. Likewise, in [4], Conjecture 1.2 was also verified for several
types of trees such as brooms, double stars, and some regular trees. Also, the twin chromatic
indices of most of the graphs discussed in [3, 4] are determined.

Conjecture 1.2. [3] If G is a connected graph of order at least 3 that is not a 5-cycle, then
χ′t(G) ≤ ∆(G) + 2.

Recently, in 2016, Lakshmi and Kowsalya [5] determined the twin chromatic index of wheel
graphs while Rajarajachozhan and Sampathkumar [6] determined the twin chromatic indices of
the square graphs P 2

n , where n ≥ 4, and C2
n, where n ≥ 6 and the twin chromatic index of the

Cartesian product Cm�Pn, where m,n ≥ 3. Moreover, Tolentino et al. [8] verified Conjecture
1.2 for all trees of order at least 3.

In this paper, the twin chromatic indices of some graphs with maximum degree 3 will be
discussed, beginning with the circulant graphs Cn(1, n2 ) with n ≥ 6 is even.

2. Circulant Graphs Cn(1, n
2
)

Definition 2.1. Let n, m, and a1, . . . , am be positive integers. An undirected graph with vertex
set V = {v0, . . . , vn−1} and edge set E = {vivi+aj : 0 ≤ i ≤ n− 1, 1 ≤ j ≤ m}, where subscripts
are modulo n, is called a Circulant Graph and is denoted by Cn(a1, . . . , am).

The following observation will be helpful.

Observation 2.2. [2] If a connected graph G contains two adjacent vertices of degree ∆(G),
then χ′t(G) ≥ 1+∆(G). In particular, if G is a connected r-regular graph for some integer r ≥ 2,
then χ′t(G) ≥ 1 + r.

Lemma 2.3. If n ≥ 6 is an even integer, then χ′t(Cn(1, n2 )) ≥ 5.

Proof. Let n ≥ 6 be an even integer and G = Cn(1, n2 ). Let E(G) = {ei = vivi+1, fi = vivi+n
2
|

0 ≤ i ≤ n− 1} (subscripts are computed modulo n). Since G is a cubic graph, by Observation
2.2, χ′t(G) ≥ 4. We will show that χ′t(G) 6= 4.

Suppose on the contrary that χ′t(G) = 4; that is, G has a twin 4-edge coloring c. If
two different elements of Z4 are used to color the edges ei, ei+1, ei+n

2
, and ei+n

2
+1 for some

i ∈ {0, . . . , n − 1}, then c′(vi+1) = c(ei) + c(ei+1) + c(fi+1) = c(ei+n
2
) + c(ei+n

2
+1) + c(fi+1) =

c′(vi+n
2
+1), which would make c′ improper. On the other hand, if all elements of Z4 are used to

color the edges ei, ei+1, ei+n
2
, and ei+n

2
+1 for some i ∈ {0, . . . , n − 1}, then any element of Z4

can no longer be used to color the edge fi+1. Therefore, for each i ∈ {0, . . . , n − 1}, the edges
ei, ei+1, ei+n

2
, and ei+n

2
+1 are colored using exactly three different elements of Z4. Let w, x, y,

and z be the four distinct elements of Z4.

First, we arrange the vertices v0, v1, . . . , vn−1 of G consecutively in a regular n-gon.

Claim 1: c(ei) 6= c(ei+2) for each i ∈ {0, 1, 2, . . . , n− 1}.
Suppose c(ei) = w = c(ei+2) and c(ei+1) = x for some i. Then we may assume c(fi+1) = y

and c(fi+2) = z. Since the edge ei+n
2
+1 is adjacent to the edges fi+1 and fi+2, c(ei+n

2
+1) = w or
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x. Without loss of generality, let c(ei+n
2
+1) = w. Then c(ei+n

2
) ∈ {x, z} and c(ei+n

2
+2) ∈ {x, y}.

Since the edges ei, ei+1, ei+n
2
, and ei+n

2
+1 must be colored using exactly three different elements

of Z4, c(ei+n
2
) = z. Using the same argument, for the edges ei+1, ei+2, ei+n

2
+1, and ei+n

2
+2,

we conclude that c(ei+n
2
+2) = y. Therefore, c′(vi+n

2
+1) = w + y + z = c′(vi+n

2
+2) and we get a

contradiction.

Suppose n = 6. By Claim 1, c(ei) 6= c(ei+2) for each i ∈ {0, 1, 2, 3, 4, 5}. Without loss of
generality, let c(e0) = w, c(e1) = x, and c(e2) = y. Since c(e2) 6= c(e4) and c(e4) 6= c(e6 = e0),
c(e4) ∈ {x, z}.

Case 1: If c(e4) = x, then the coloring is as shown in Figure 1.(a). In this case, c′(v1) would
be equal to c′(v4).

Case 2: If c(e4) = z, a similar argument (see Figure 1.(b)) gives c′(v0) = c′(v3).

Figure 1. Illustrating the coloring c when n = 6.

Hence, χ′t(G) ≥ 5 if G = C6(1, 3). Assume now that n ≥ 8.

Claim 2: c(ei) 6= c(ei+n
2
) for each i ∈ {0, 1, 2, . . . , n− 1}.

Suppose c(ei) = w = c(ei+n
2
) for some i. Then, we may assume that c(ei−1) = x and

c(ei+n
2
−1) = y. Then c(fi) = z and c(ei−2) ∈ {y, z}. If c(ei−2) = z, then c(fi−1) = w.

Then c′(vi−1) = w + x + z = c′(vi). Suppose c(ei−2) = y. Then c(ei+n
2
−2) ∈ {w, z}. But

by Claim 1, c(ei+n
2
−2) 6= c(ei+n

2
) = w so c(ei+n

2
−2) = z. Thus c(fi−1) = w. Therefore,

c′(vi+n
2
−1) = w + y + z = c′(vi+n

2
). In any case, c′ becomes improper, a contradiction.

Claim 3: c(ei) ∈ {c(ei+n
2
−1), c(ei+n

2
+1)} for each i ∈ {0, 1, 2, . . . , n− 1}.

Suppose w = c(ei) 6∈ {c(ei+n
2
−1), c(ei+n

2
+1)} for some i. By Claim 1 and Claim 2, we may

assume that c(ei+n
2
−1) = x, c(ei+n

2
) = y, and c(ei+n

2
+1) = z. Then c(fi) = z and c(fi+1) = x.

Therefore, c′(vi+n
2
) = x+ y + z = c′(vi+n

2
+1) and we get a contradiction.

Suppose c(e0) = w. By Claims 1 and 3, exactly one of the edges en
2
−1 and en

2
+1 must

be colored using the color w. Without loss of generality, let c(en
2
−1) = w. Moreover,

we suppose c(en
2
) = x. Then c(en−1) 6= x; so by Claim 3, c(e1) = x. By Claim 3,

c(en
2
+1) ∈ {c(e0) = w, c(e2)}. Since c(en

2
−1) = w and c(en

2
−1) 6= c(en

2
+1), c(en

2
+1) = c(e2).

Similarly, c(en
2
+2) ∈ {c(e1) = x, c(e3)}. Since c(en

2
) = x and c(en

2
) 6= c(en

2
+2), c(en

2
+2) = c(e3).

Continuing this argument gives us c(ej) = c(ej+n
2
+1) for each j ∈ {n2 + 1, n2 + 2, . . . , n − 1}.

Then c(en−2) = c(e(n−2)+n
2
+1 = en

2
−1) = w. Therefore c(en−2) = w = c(e0 = en) (see Figure 2),

contradicting Claim 1. Hence, χ′t(G) ≥ 5.
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Figure 2. Illustrating the coloring c when c(e1) = x.

We will show in the next theorem that the twin chromatic index of Cn(1, n2 ), where n ≥ 8
and n ≡ 0 (mod 4), is 5.

Theorem 2.4. If n ≥ 8 and n ≡ 0 (mod 4), then χ′t(Cn(1, n2 )) = 5.

Proof. Let n ≥ 8, n ≡ 0 (mod 4), and G = Cn(1, n2 ). By Lemma 2.3, χ′t(G) ≥ 5. We will
show that χ′t(G) ≤ 5, that is, G has a twin 5-edge coloring. We construct a 5-edge coloring
c : E(G)→ Z5 in G. Let E(G) = {ei = vivi+1, fi = vivi+n

2
: 0 ≤ i ≤ n− 1}. Let

c(ei) =

 0 if i is even,
1 if i is odd and 1 ≤ i < n

2 ,
4 if i is odd and n

2 < i ≤ n− 1,

and

c(fi) =

{
2 if i is odd,
3 if i is even.

It is straightforward to see that, by definition, c is a proper edge coloring. Moreover,

c′(vi) =


1 if i is odd and n

2 < i ≤ n− 1,
2 if i is even and n

2 < i ≤ n,
3 if i is odd and 1 ≤ i < n

2 ,
4 if i is even and 2 ≤ i ≤ n

2 .

Then c′ is also proper. Hence c is a twin 5-edge coloring of G.

Figure 3 shows twin 5-edge colorings of the circulant graphs C6(1, 3), C10(1, 5), and C14(1, 7).
Therefore, χ′t(Cn(1, n2 )) = 5 for n ∈ {6, 10, 14}.

We now formulate the following conjecture.

Conjecture 2.5. If n ≥ 6 and n ≡ 2 (mod 4), then χ′t(Cn(1, n2 )) = 5.



ICCGANT 2019

Journal of Physics: Conference Series 1538 (2020) 012004

IOP Publishing

doi:10.1088/1742-6596/1538/1/012004

5

Figure 3. Twin 5-edge colorings of C6(1, 3), C10(1, 5), and C14(1, 7).

3. Some Generalized Petersen Graphs
In this section, the twin chromatic indices of some generalized Petersen graphs will be discussed.
We begin with the generalized Petersen graphs G = GP (ms, k) where m ≥ 3, s ≥ 1, and
gcd(m, k) = 1.

Definition 3.1. The Generalized Petersen Graph GP (n, k), n ≥ 3 and 1 ≤ k ≤ n − 1 and
k 6= n

2 , has vertex set {u0, u1, . . . , un−1, v0, v1, . . . , vn−1} and edge set {uiui+1, uivi, vivi+k : 0 ≤
i ≤ n− 1} with subscripts reduced modulo n.

Remark 3.2. Since GP (n, k) is a cubic graph, χ′t(GP (n, k)) ≥ 4.

Throughout this section, for each i with 0 ≤ i ≤ n − 1, we let ei = uiui+1, fi = uivi and
e′i = vivi+k. Let E = {ei : 0 ≤ i ≤ n−1}, F = {fi : 0 ≤ i ≤ n−1} and E′ = {e′i : 0 ≤ i ≤ n−1}.

Lemma 3.3. Let G = GP (ms, k) where m ≥ 3 and s ≥ 1. If gcd(m, k) = 1, then G has a twin
(m+ 1)-edge coloring. Therefore, χ′t(G) ≤ m+ 1.

Proof. Since gcd(m, k) = 1, k 6≡ 0 (mod m). We construct a twin (m + 1)-edge coloring
c : E(G) → Zm+1 in G. For each i ∈ {0, 1, 2, . . . ,ms − 1}, let c(ei) = i mod m and let
c(fi) = m. Then by definition of c, c(ei) 6= c(ei−1) and c(fi) = m 6∈ {c(ei), c(ei−1)} for
each i ∈ {0, 1, 2, . . . ,ms − 1}. Since m ≥ 3, i 6= i + 2 in Zm so c(ei) 6= c(ei+2) for each
i ∈ {0, 1, 2, . . . ,ms− 1}. Therefore,

c′(ui) = c(ei−1) + [c(ei) +m] 6= [c(ei) +m] + c(ei+1) = c′(ui+1)

for each i ∈ {0, 1, 2, . . . ,ms− 1}. Note that GP (ms, k) ∼= GP (ms,−k). If k ≡ 1 (mod m), then
−k 6≡ 1 (mod m) and we will consider GP (ms,−k) instead of GP (ms, k).

We may then assume that k 6≡ 1 (mod m). Next, we define c(e′i) = c(ei) for each
i ∈ {0, 1, 2, . . . ,ms − 1}. Then, c(fi) 6∈ {c(e′i−k), c(e′i)} for each i ∈ {0, 1, 2, . . . ,ms − 1}. Since
k 6≡ 0 (mod m), i−k 6≡ i (mod m) so c(e′i−k) 6= c(e′i) for each i ∈ {0, 1, 2, . . . ,ms−1}. Therefore,
c is a proper (m+ 1)-edge coloring of G. Moreover, i− k 6≡ i+ k (mod m) so c(e′i−k) 6= c(e′i+k)
for each i ∈ {0, 1, 2, . . . ,ms− 1}. Therefore,

c′(vi) = c(e′i−k) + [c(e′i) +m] 6= [c(e′i) +m] + c(e′i+k) = c′(vi+k)

for each i ∈ {0, 1, 2, . . . ,ms−1}. Since k 6≡ 1 (mod m), i−1 6≡ i−k (mod m) so c(ei−1) 6= c(e′i−k)
and
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c′(ui) = c(ei−1) + [c(ei) +m]
6= c(e′i−k) + [c(ei) +m]
= c(e′i−k) + [c(e′i) +m]
= c′(vi)

for each i ∈ {0, 1, 2, . . . ,ms−1}. Therefore, c′ is also proper and c is a twin (m+1)-edge coloring
of G.

Example 3.4. Figure 4 shows twin 6-edge colorings of GP (10, 3) and GP (10, 6). Since
6 ≡ 1 (mod 5), we apply the coloring on GP (10, 4) instead of GP (10, 6).

Figure 4. Twin 6-edge colorings of GP (10, 3) and GP (10, 6).

Observe that if G = GP (3s, k) where k is not divisible by 3, then χ′t(G) = 4 = 3 + 1 by
Remark 3.2 and Lemma 3.3. We formally state this observation in the following theorem.

Theorem 3.5. If G = GP (3s, k) where s ≥ 1 and k 6≡ 0 (mod 3), then χ′t(G) = 4.

Theorem 3.6. Let n ≥ 3 be an integer. If n 6∈ {4, 5}, then χ′t(GP (n, 2)) = 4.

Proof. If n ≡ 0 (mod 3), then by Theorem 3.5, χ′t(G) = 4. Therefore, we can just assume
that n 6≡ 0 (mod 3). Since χ′t(G) ≥ 4, we only need to show that χ′t(G) ≤ 4. We do this by
constructing a twin 4-edge coloring c : E(G)→ Z4 in G.

Case 1: Suppose n ≡ 1 (mod 3).

Let c(en−1) = 0. For each i ∈ {0, 1, 2, . . . , n− 2}, let

c(ei) =

{
i mod 3 if i 6≡ 0 (mod 3)
3 otherwise.

Moreover, for each i ∈ {0, 1, 2, . . . , n− 1}, let c(e′i) = c(ei+1). Finally, let c(f0) = 2, c(fn−1) = 1,
c(fn−2) = 3, and c(fi) = 0 for each i ∈ {1, 2, . . . , n − 3}. Therefore, by definition of c, it
is straightforwar to see that c is a proper edge coloring of G. Observe that c′(un−2) = 2,
c′(un−1) = 3 and for each i ∈ {0, 1, 2, . . . , n− 3},

c′(ui) =

 1 if i ≡ 0 (mod 3)
0 if i ≡ 1 (mod 3)
3 if i ≡ 2 (mod 3).
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Moreover, c′(vn−1) = 2 and for each i ∈ {0, 1, 2, . . . , n− 2},

c′(vi) =

 3 if i ≡ 0 (mod 3)
1 if i ≡ 1 (mod 3)
0 if i ≡ 2 (mod 3).

Hence, c′ is also proper and c is a twin 4-edge coloring of G.

Case 2: Suppose n ≡ 2 (mod 3).

For i ∈ {0, 1, 2, . . . , n− 6}, let

c(ei) =

{
i mod 3 if i 6≡ 0 (mod 3)
3 otherwise.

and let (c(en−5), c(en−4), c(en−3), c(en−2), c(en−1)) = (0, 3, 1, 2, 0). Moreover, for i ∈ {0, 1, 2, . . . ,
n− 1}, let c(e′i) = c(ei). Finally, let

(c(f1), c(f0), c(fn−1), c(fn−2), c(fn−3), c(fn−4), c(fn−5)) = (2, 1, 3, 0, 2, 1, 3)

and let c(fi) = 0 for each i ∈ {2, 3, . . . , n − 6}. By definition of c, it is straightforward to see
that c is a proper edge coloring of G. Observe that, for i ∈ {2, 3, . . . , n− 6},

c′(ui) =

 1 if i ≡ 0 (mod 3)
0 if i ≡ 1 (mod 3)
3 if i ≡ 2 (mod 3)

and c′(vi) =

 0 if i ≡ 0 (mod 3)
3 if i ≡ 1 (mod 3)
1 if i ≡ 2 (mod 3).

Moreover,
c′(u1, u0, un−1, un−2, un−3, un−4, un−5) = (2, 0, 1, 3, 2, 0, 1)

and
c′(v1, v0, vn−1, vn−2, vn−3, vn−4, vn−5) = (3, 2, 0, 1, 3, 2, 0).

Hence, c′ is proper and c is a twin 4-edge coloring of G.

Theorem 3.7. If G = GP (4s, k), where s ≥ 1 and k is odd, then χ′t(G) = 4.

Proof. Let G = GP (4s, k) where s ≥ 1 and k is odd. Then k ≡ 1 (mod 4) or k ≡ 3 (mod 4).
Note that GP (4s, k) ∼= GP (4s, 4s − k). If k ≡ 1 (mod 4), 4s − k ≡ 3 (mod 4). Therefore, we
may just assume that k ≡ 3 (mod 4). We construct a twin 4-edge coloring c : E(G)→ Z4.

For each i ∈ {0, 1, 2, . . . , 4s − 1}, let c(ei) = i mod 4. Moreover, let c(fi) = c(ei+1) and
c(e′i) = c(ei+2) for each i ∈ {0, 1, 2, . . . , 4s − 1}. By definition of c, the colors c(ei), c(ei+1),
c(ei+2), and c(ei+3) are the four distinct elements of Z4 for each i ∈ {0, 1, 2, . . . , 4s − 1}.
Therefore, c(fi) = c(ei+1) 6∈ {c(ei−1), c(ei), c(ei+2) = c(e′i)} for each i ∈ {0, 1, 2, . . . , 4s − 1}.
Moreover,

c′(ui) = c(ei−1) + c(ei) + c(fi)
6= c(ei+2) + c(ei) + c(fi)
= c(fi+1) + c(ei) + c(ei+1)
= c′(ui+1)

for each i ∈ {0, 1, 2, . . . , 4s − 1}. Since k ≡ 3 (mod 4), i − k + 2 ≡ i − 1 (mod 4), i + k + 2 ≡
i + 1 (mod 4) and i + k + 1 ≡ i (mod 4). Therefore, c(e′i−k) = c(e(i−k)+2) = c(ei−1). Thus,
c(fi) 6= c(ei−1) = c(e′i−k) and c(e′i−k) = c(ei−1) 6= c(ei+2) = c(e′i) for each i ∈ {0, 1, 2, . . . , 4s−1}.
Hence, c is a proper edge coloring. It remains to show that c′(ui) 6= c′(vi) and c′(vi) 6= c′(vi+k)
for each i ∈ {0, 1, 2, . . . , 4s− 1}.
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For each i ∈ {0, 1, 2, . . . , 4s− 1},

c′(ui) = c(ei−1) + c(ei) + c(fi)
= c(e′i−k) + c(ei) + c(fi)
6= c(e′i−k) + c(ei+2) + c(fi)
= c(e′i−k) + c(e′i) + c(fi)
= c′(vi)

and

c′(vi) = c(e′i−k) + c(e′i) + c(fi)
= c(ei−1) + c(e′i) + c(ei+1)
6= c(ei) + c(e′i) + c(ei+1)
= c(fi+k) + c(e′i) + c(e′i+k)
= c′(vi+k).

Hence, c is a twin 4-edge coloring of G.

4. Sufficient Conditions for Graphs with Maximum Degree 3
In this section, we provide some sufficient conditions for a graph with maximum degree 3 to
have twin chromatic index greater than 3. We begin by defining the following terms.

Definition 4.1. Let n ≥ 2 and G be a graph with ∆(G) ≥ 3. Let P (u, v) ⊂ G be a u − v path
of order n with deg(w) = 2 in G for each w ∈ V (P (u, v))\{u, v}. Then P (u, v) is called an
internal path of G if deg(u),deg(v) ≥ 3 in G and is called a pendant path of G if deg(u) ≥ 3
and v is a leaf in G.

If u is a vertex of G and P is an internal or a pendant path of G such that u is an end vertex
of P , then P and u are incident with each other. Therefore, an internal path or a pendant path
P (u, v) is incident with the vertices u and v.

Lemma 4.2. Let T be a tree with ∆(T ) = 3 and suppose that no two vertices of T of degree 3
are adjacent. Then χ′t(T ) ≥ 4 if one of the following holds:

(i) there exists a vertex u of degree 3 such that d(u, x) ≡ 0 (mod 3) for each internal path
P (u, x) in T and d(u, y) ∈ {1, k}, where k ≡ 2 (mod 3) for each pendant path P (u, y) in T ;

(ii) there exists a vertex u of degree 3 such that at least two internal paths of T are incident
with u and d(u, x) ≡ 1 (mod 3) for each internal path P (u, x);

(iii) there exists a vertex u of degree 3 such that at least two pendant paths of T are incident
with u and d(u, y) ≡ 0 (mod 3) for each pendant path P (u, y);

(iv) there exists a vertex u of degree 3 such that one internal path P (u, x) of T is incident with
u with d(u, x) ≡ 1 (mod 3) and one pendant path P (u, y) of T is incident with u with
d(u, y) ≡ 0 (mod 3);

(v) there exists an internal path P (u, v) of T with d(u, v) ≡ 2 (mod 3) such that d(z, x) ≡
0 (mod 3) for each internal path P (z, x) of T (z ∈ {u, v} and x 6∈ {u, v}\{z}) and
d(z, y) ∈ {1, k}, where k ≡ 2 (mod 3) for each pendant path P (z, y) of T (z ∈ {u, v});
or

(vi) d(u, v) 6≡ 1 (mod 3) for each internal path P (u, v) in T and d(x, y) ∈ {1, k}, where
k ≡ 2 (mod 3) for each pendant path P (x, y) in T .

Proof. Let P 1, P 2, P 3, . . . , P q be an ordering of all the internal/pendant paths of T (q ≥ 3).
If P i = P (u, v) (1 ≤ i ≤ q), then we let P i = P (u, v) = P i(u, v) with V (P i(u, v)) = {u =
wi
0, w

i
1, . . . , w

i
ni−2, w

i
ni−1 = v} and E(P i(u, v)) = {eij = wi

jw
i
j+1 : 0 ≤ j ≤ ni − 2} where

deg(u) = 3 and ni is the order of P i.

If T has a twin 3-edge coloring c : E(T )→ Z3, then we have the following observations:

• c(Eu) = Z3 for each u ∈ V (T ) with deg(u) = 3;

• 0 6∈ {c(eini−3), c(e
j
0)} for any pendant path P i of order ni ≥ 3 and for any pendant path P j

of order 2; and
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• c(eik) 6= −c(eik+1) for each k ∈ {0, ni − 3} if P i is an internal path of order ni and

c(ej0) 6= −c(e
j
1) if P j is a pendant path of order at least 3.

Moreover, for each pendant path P j(u, v) of order nj and for each internal path P i(x, y) of

order ni, the sequences (c(ej0), c(e
j
1), . . . , c(e

j
nj−2)) and (c(ei0), c(e

i
1), . . . , c(e

i
ni−2)) are periodic of

period 3 such that, for a ∈ {1, 2}

(c(ej0), c(e
j
1), . . . , c(e

j
nj−2)) =


(0, a,−a, . . . ,−a) and d(u, v) ≡ 0 (mod 3),
(0, a,−a, . . . , 0) and d(u, v) ≡ 1 (mod 3),
(a, 0,−a, . . . , 0) and d(u, v) ≡ 2 (mod 3),
(a, 0,−a, . . . , a) and d(u, v) ≡ 1 (mod 3)

(1)

and

(c(ei0), c(e
i
1), . . . , c(e

i
ni−2)) =


(0, a,−a, . . . , a) and d(x, y) ≡ 2 (mod 3),
(0, a,−a, . . . , 0) and d(x, y) ≡ 1 (mod 3),
(a, 0,−a, . . . , 0) and d(x, y) ≡ 2 (mod 3),
(a, 0,−a, . . . ,−a) and d(x, y) ≡ 0 (mod 3).

(2)

For each case, we need to show that χ′t(T ) 6= 3, that is, T has no twin 3-edge coloring.
Suppose on the contrary that T has a twin 3-edge coloring c : E(T ) → Z3 (for each case). Let
a ∈ {1, 2} and let c(P i) = c((ei0), c(e

i
1), . . . , c(e

i
ni−2)) for each 1 ≤ i ≤ q.

Proof of 1: By equation (2), c(ei0) ∈ {1, 2} if P i(u, x) is an internal path of T with

d(u, x) ≡ 0 (mod 3) (wi
0 = u). Similarly, by our observation and equation (1), c(ej0) ∈ {1, 2} if

P j(u, y) is a pendant path of T with d(u, y) ∈ {1, k}, where k ≡ 2 (mod 3). Therefore 0 6∈ c(Eu).
This contradicts the fact that c(Eu) = Z3.

Proof of 2: In this case, T has at least three vertices of degree 3. By equation (2),
c(P i) = (0, a,−a, . . . , 0) if P i(u, x) is an internal path of T with d(u, x) ≡ 1 (mod 3). Therefore,
by our assumption, at least two of the edges incident with u are colored 0. This contradicts the
assumption that c is a proper edge coloring of T .

Proof of 3: By equation (1), c(P i) = (0, a,−a, . . . ,−a) if P i(u, y) is a pendant path of T
with d(u, y) ≡ 0 (mod 3). Since d(u, y) ≡ 0 (mod 3) for each pendant path P (u, y) in T , at least
two of the edges incident with u are colored 0 which is impossible since c is proper.

Proof of 4: Let P i(u, x) be an internal path of T (wi
0 = u) with d(u, x) ≡ 1 (mod 3) and

let P j(u, y) be a pendant path of T (wj
0 = u) with d(u, y) ≡ 0 (mod 3). Then by equations (1)

and (2) we have c(ei0) = 0 = c(ej0), a contradiction.

Proof of 5: Without loss of generality, let P i = P (u, v) where wi
0 = u. By our observation

and equation (1), we have c(ej0) 6= 0 for any pendant path P j(u, y) of T . On the other hand, by
equation (2), we have 0 6∈ {c(el0), c(elnl−2)} for any internal path P l(u, x) of T (x 6= v). Then we

must have c(ei0) = 0. Using similar arguments, we can say that c(eini−2) = 0. But by equation

(2), since d(u, v) ≡ 2 (mod 3), c(P i) = (0, a,−a, . . . , a), a contradiction.

Proof of 6: By condition 1, we can just assume that T has at least two vertices of degree
3. Suppose T has at least two vertices of degree 3. We choose a vertex of T of degree 3 that
is incident with two pendant paths of T and label it by u1. By assumption, there exists a
unique internal path P i(u, v) of T . We let P 1 = P i(u, v). By our observation and by equation
(1), we must have c(e10) = 0; so by equation (2) we have d(u1, v) ≡ 2 (mod 3). We now let
v = u2. Since d(u1, u2) ≡ 2 (mod 3), c(P 1) = (0, a,−a, . . . , a) (w1

0 = u1). By condition 5, we
can just assume that there exists an internal path P j(u2, w) of T with d(u2, w) ≡ 2 (mod 3)
and w 6= u1. We let P 2 = P j(u2, w) and let w = u3. Since d(u2, u3) ≡ 2 (mod 3),
c(P 2) = (0, a,−a, . . . , a) or (0,−a, a, . . . ,−a) (w2

0 = u2). Since T is finite, we will have a
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finite sequence of distinct internal paths P 1, P 2, . . . , Pm such that for each ` ∈ {1, 2, . . . ,m},
P ` = P `(u`, u`+1), d(u`, u`+1) ≡ 2 (mod 3), c(P `) = (0, a,−a, . . . , a) or (0,−a, a, . . . ,−a)
(w`

0 = u`), and d(um+1, x) ≡ 0 (mod 3) for each internal path P (um+1, x) (x 6= um) (if any).
Thus, we have 0 6∈ c(Eum+1) which is impossible.

It is straighforward to check that Lemma 4.2 is also true for any cyclic connected graph G
with maximum degree 3 if one of the conditions 1− 5 of Lemma 4.2 holds for G. On the other
hand, condition 6 in Lemma 4.2 is not a sufficient condition for a cyclic connected graph G
with maximum degree 3 to have twin chromatic index greater than 3 as the example in Figure
5 shows.

Figure 5. A twin 3-edge coloring of a cyclic connected graph.

5. Conclusion
In this paper, we have shown that the twin chromatic index of a circulant graph Cn(1, n2 ) is 5 for
any even integer n ≥ 6 with n ≡ 0 (mod 4). On the other hand, we showed that the Pertersen
graphs GP (3s, k), GP (m, 2), and GP (4s, l) where s ≥ 1, k 6≡ 0 (mod 3), m ≥ 3 and m 6∈ {4, 5},
and l is odd have twin chromatic index 4. Moreover, we provided some sufficient conditions for
a graph with maximum degree 3 to have twin chromatic index greater than 3.
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