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The sigma chromatic number of the Sierpiński gasket

graphs and the Hanoi graphs

A D Garciano, R M Marcelo, M J P Ruiz and M A C Tolentino
Department of Mathematics, School of Science and Engineering, Loyola Schools,
Ateneo de Manila University, Philippines

E-mail: agarciano@ateneo.edu, rmarcelo@ateneo.edu, mruiz@ateneo.edu,

mtolentino@ateneo.edu

Abstract. A vertex coloring c : V (G) → N of a non-trivial connected graph G is called a
sigma coloring if σ(u) 6= σ(v) for any pair of adjacent vertices u and v. Here, σ(x) denotes
the sum of the colors assigned to vertices adjacent to x. The sigma chromatic number of G,
denoted by σ(G), is defined as the fewest number of colors needed to construct a sigma coloring
of G. In this paper, we determine the sigma chromatic numbers of the Sierpiński gasket graphs
and the Hanoi graphs. Moreover, we prove the uniqueness of the sigma coloring for Sierpiński
gasket graphs.

1. Introduction
In [4], Chartrand, Okamoto, and Zhang introduced a new kind of vertex coloring called a sigma
coloring. It is defined as follows.

Definition 1.1 (Chartrand, Okamoto, Zhang [4]). For a non-trivial connected graph G, let
c : V (G) → N be a vertex coloring of G. For each v ∈ V (G), the color sum of v, denoted
by σ (v) , is defined to be the sum of the colors of the vertices adjacent to v. If σ (u) 6= σ (v)
for every two adjacent u, v ∈ V (G), then c is called a sigma coloring of G. The minimum
number of colors required in a sigma coloring of G is called its sigma chromatic number and
is denoted by σ(G).

Sigma coloring is an example of a neighbor-distinguishing coloring, the most studied example
of which is the proper vertex coloring. Over the years, various neighbor-distinguishing colorings
have also been introduced and discussed in literature such as in [3] and [5]. The notion of sigma
coloring is closely related to the vertex colorings/labellings, discussed in [1], [9], [12] that also
use the sum of the colors/labels of a vertex’s neighbors.

Sigma colorings of different families of graphs have already been studied. For instance,
Chartrand et al. determined the sigma chromatic numbers of paths, cycles, bipartite, and
complete multipartite graphs in [4]. More recently, in [10], Luzon, Ruiz, and Tolentino have
determined the sigma chromatic numbers of some families of circulant graphs. The complexity
of the sigma coloring problem has also been studied in [6].

In this paper, we determine the sigma chromatic numbers of the Sierpiński gasket graphs and
the Hanoi graphs.

The Sierpiński gasket graph Sn, n ≥ 1, is the graph whose vertices are the intersection
points of the finite Sierpiński gasket and whose edges are the line segments of the gasket [13].
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An alternative description of Sn can also be found in [8]. The construction of Sn is shown in
Fig. 1 while a sigma coloring of S2 is shown in Fig. 2.

Figure 1. Sierpiński gasket graphs.

Figure 2. A sigma coloring of S2.

On the other hand, the Hanoi graphs ([2], [7], [8]) are derived from the states of the Tower
of Hanoi problem. Like the Sierpiński gasket graphs, the Hanoi graphs are also constructed in
an iterative manner as shown in Fig. 3. A sigma 2-coloring of H2 is shown in Fig. 4.

Figure 3. Hanoi graphs.

The (ordinary) chromatic numbers of Sn and Hn have already been determined by other
researchers. For the Hanoi graphs, Parisse has constructed a natural coloring that leads to the
following result.

Theorem 1.2 (Parisse, [11]). For all n ≥ 1, the chromatic number of Hn is 3.

For the Sierpiński gasket graphs, Teguia and Godbole proved the following:
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Figure 4. A sigma 2-coloring of H2.

Theorem 1.3 (Teguia, Godbole [13]). For all n ≥ 1, the chromatic number of Sn is 3.

Moreover, Klavžar proved the following stronger result.

Theorem 1.4 (Klavžar [8]). The proper 3-coloring of Sn is unique for any n ≥ 1.

More precisely, Theorem 1.4 states that if c1 and c2 are two distinct proper 3-colorings of Sn,
then it is possible to transform c1 to c2 by performing rotations, reflections, and/or a change of
colors used.

In [4], Chartrand et al. also showed the following:

Theorem 1.5 (Chartrand, Okamoto, Zhang [4]). For every graph G,

σ(G) ≤ χ(G).

Hence, the sigma chromatic numbers of the Sierpiński gasket graphs and the Hanoi graphs are
at most three. In this paper, we determine the exact sigma chromatic number of these graphs.
Moreover, we also prove the uniqueness, in the same sense as in Theorem 1.4, of the sigma
coloring of Sn (n ≥ 2) that uses the minimum number of colors. The following are our main
results.

Theorem 1.6.

(1) For all n ≥ 3, the sigma chromatic number of Hn is 3.

(2) For all n ≥ 2, the sigma chromatic number of Sn is 2.

(3) For all n ≥ 2, the sigma 2-coloring of Sn is unique.

In Section 2, we prove statement (1) by showing that Hn, n ≥ 3, does not have a sigma
2-coloring. In Section 3, we prove statement (2) by constructing iteratively a sigma 2-coloring
of Sn, n ≥ 2. Finally, in Section 4, we prove the uniqueness of this sigma 2-coloring.

2. The Sigma Chromatic Number of the Hanoi Graphs
In this section, we prove that the sigma chromatic number of the Hanoi graph Hn is 3 for all
n ≥ 3. We begin with the following proposition.

Proposition 2.1. Let n ≥ 3. If Hn is not sigma 2-colorable, then neither is Hn+1.

Proof. Suppose that Hn+1 has a sigma 2-coloring c that uses the colors a and b. Moreover,
assume that a and b have been chosen so that the sets {3a, 2a+ b, 2b+ a, 3b} and {2a, a+ b, 2b}
are disjoint.

Let S be one of the three Hn subgraphs of Hn+1 and define the coloring c′ to be the restriction
of c to S. We want to show that c′ is a sigma 2-coloring of S.
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To this end, let x and y be the two corner vertices of S that originally have degree three as
vertices of Hn+1. Note that c and c′ induce the same color sums for all vertices in S \ {x, y}.
Hence, to show that c′ is a sigma coloring of S, we need to focus only on the color sums of x
and y. Now, since x and y are vertices with degree two in S, their color sums with respect to
c′ are in the set {2a, a+ b, 2b}. Hence, by the assumption, these color sums cannot be equal to
the color sum of any of the neighbors of x or y since these neighbors have degree three. This
completes the proof.

Thus, to prove that σ(Hn) = 3, n ≥ 3, it is sufficient to prove that H3 is not sigma 2-colorable.
We show this in the following lemma.

Lemma 2.2. The sigma chromatic number of H3 is 3.

Proof. Suppose there is a sigma 2-coloring c : V (H3)→ {a, b} of H3. We show that c produces
a contradiction. Let us label the vertices of H3 as shown in Fig. 5.

Figure 5. Vertex labels of the Hanoi graph H3.

We consider cases based on the possible values of c(v4), c(v6), and c(v7). There are four cases,
in each of which we show how the contradiction arises.

Case 1
(
c(v4), c(v6), c(v7)

)
= (a, a, a)

Refer to Fig. 6. In this case, the partial color sums of v4, v6, and v7 are all equal to 2a.
Since c is a sigma coloring, the actual color sums of the three vertices must be different from
each other. This implies that c(v2), c(v8), and c(u1) must all have different values. Clearly, this
is not possible since there are only two colors.

Case 2
(
c(v4), c(v6), c(v7)

)
= (b, a, a)

In this case, the partial color sums of v6 and v7 are both equal to a + b. Since c is a sigma
coloring, the actual color sums of v6 and v7 must be distinct. Hence, c(u1) 6= c(v8).

(2.a) Suppose
(
c(u1), c(v8)

)
= (a, b). Refer to Fig. 7. In this case, σ(v6) = 2a + b and

σ(v7) = 2b+a. Since σ(v6) cannot be equal to σ(u1), we must have {c(u2), c(u3)} 6= {a, b}.
Moreover, Case 1 implies that

(
c(u2), c(u3)

)
6= (a, a). Hence,

(
c(u2), c(u3)

)
must be (b, b).

This implies that σ(u1) = 2b + a and that u2 and u3 both have partial color sums equal
to a + b. Since the actual color sums of u2 and u3 cannot be equal to σ(u1), there are no
possible values for c(u4) and c(u5) that do not violate the assumption that c is a sigma
coloring.



ICCGANT 2019

Journal of Physics: Conference Series 1538 (2020) 012002

IOP Publishing

doi:10.1088/1742-6596/1538/1/012002

5

Figure 6. Case 1. Figure 7. Case 2.a.

(2.b) Suppose
(
c(u1), c(v8)

)
= (b, a). This case can be treated in a similar way as Case 2.1.

Case 3
(
c(v4), c(v6), c(v7)

)
= (a, a, b)

In this case, the partial color sums of v4 and v6 are both equal to a + b. Since c is a sigma
coloring, the actual color sums of v4 and v6 must be distinct. Hence, c(v2) 6= c(u1).

(3.a) Suppose
(
c(v2), c(u1)

)
= (b, a). Then σ(v4) = 2b+ a and σ(v6) = 2a+ b. This proceeds in

the same manner as Case (2.a).

(3.b) Suppose
(
c(v2), c(u1)

)
= (a, b). Then σ(v6) = 2b + a and σ(v4) = 2a + b. It follows that

c(v8) = a and σ(v7) = 3a.

(i) Suppose
(
c(v5), c(v9)

)
= (a, a). By Case 1, this leads to a contradiction.

(ii) Suppose
(
c(v5), c(v9)

)
= (b, a). By Case 2, this leads to a contradiction as well.

(iii) Suppose
(
c(v5), c(v9)

)
= (a, b). Refer to Fig. 8. In this case, the partial color sums of

v2 and v3 are both equal to 2a. Since their actual color sums must be distinct, there
is no possible value for c(v1).

Figure 8. Case 3.b.iii. Figure 9. Case 3.b.iv. Figure 10. Case 4.

(iv) Suppose
(
c(v5), c(v9)

)
= (b, b). If c(v3) = b, then the partial color sums of v2 and v3

are equal and there is no possible value for c(v1). Hence, c(v3) = a and σ(v5) = 2a+b.
It follows that c(w1) = b and σ(v9) = 2b + a. This case then proceeds similarly as
Case (2.a). Refer to Fig. 9
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Case 4
(
c(v4), c(v6), c(v7)

)
= (a, b, a)

Refer to Fig. 10. In this case, the partial color sums of v4 and v7 are both equal to a+b. Since
c is a sigma coloring, the actual color sums of v4 and v7 must be distinct. Hence, c(v2) 6= c(v8).
This implies that {σ(v4), σ(v7)} = {2a + b, 2b + a}; hence, c(u1) = a so that σ(v6) = 3a. By
Cases 1, 2, and 3, there are no possible values for c(u2) and c(u3). Therefore, there is no sigma
2-coloring of H3. Since χ(H3) = 3 and σ(H3) ≤ χ(H3), we must have σ(H3) = 3.

3. The Sigma Chromatic Number of the Sierpiński Gasket Graphs
In this section, we prove that the sigma chromatic number of the Sierpiński gasket graph Sn is 2
for all n ≥ 2. Throughout this section, we use a, b to denote distinct positive integers for which
the sets {a+ b, 2a, 2b} and {2a+ 2b, 3a+ b, 3b+ a, 4a, 4b} are disjoint. In Fig. 11, we present a
sigma 2-coloring of S2 using a and b as colors. Our proof consists of the following steps:

(i) Construct a sigma 2-coloring of S3 using the sigma 2-coloring of S2 in Fig. 11

(ii) Construct a sigma 2-coloring of S4 using the obtained sigma 2-coloring of S3

(iii) Generalize to any Sn by induction

3.1. Construction of a sigma 2-coloring of S3
Denote the coloring in Fig. 11 by LL. Perform two operations on LL to obtain two new colorings
LR and U:

(i) To obtain LR, we rotate LL 120◦ clockwise. LR is shown in Fig. 12.

(ii) To obtain U, we reflect LL along the angle bisector of its lower left corner. We then
interchange the colors a and b. U is shown in Fig. 13.

Figure 11. LL. Figure 12. LR. Figure 13. U.

Notice that the above operations ensure that the colorings in LR and U are sigma colorings
as well. Using LL, LR, and U, construct a sigma coloring of S3 as shown in Fig. 14. In this
figure, a double arrow between a pair of corner vertices signifies that these two vertices are to
be identified with each other. The resulting sigma coloring of S3 is shown in Fig. 15.

3.2. Construction of a sigma 2-coloring of S4
Denote by LL2 the coloring in Fig. 15. As in the previous construction, perform operations on
LL2 to obtain two new colorings LR2 and U2:

(i) To obtain LR2, reflect LL2 along the angle bisector of its lower left corner, then interchange
the colors a and b.

(ii) To obtain U2, rotate LL 120◦ counterclockwise.

Using LL2,U2, and LR2, construct the sigma 2-coloring of S4 as done for S3. The constructed
sigma coloring is shown in Fig. 16.
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Figure 14. Constructing a sigma coloring of
S3 using LL, LR, and U.

Figure 15. The constructed sigma coloring
of S3.

Figure 16. The constructed sigma 2-coloring of S4.

3.3. Induction
In Fig. 17, a simplified version of Fig. 16 is shown. This version shows only the vertices of the
three corner triangles, their colors, and their color sums.

Fig. 16 shows the important similarities between the sigma 2-colorings of S2 and S4:

• Corresponding corner vertices have the same colors and color sums.

• The corresponding neighbors of corresponding corner vertices have the same colors and
color sums.

Due to these similarities, it is possible to repeat the operations performed previously to
obtain sigma 2-colorings of S5 and S6. This process can then be repeated to complete the proof.
Therefore, the sigma chromatic of Sn, n ≥ 2, is 2.
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Figure 17. A simplified version of Fig. 16.

The preceding proof leads to the following result, which is more precise than statement (2)
of Theorem 1.6.

Theorem 3.1. Let n ≥ 2 be an integer.

(i) If n is even, then Sn has a sigma 2-coloring of the form shown in Fig. 18.

(ii) If n is odd, then Sn has a sigma 2-coloring of the form shown in Fig. 19.

Figure 18. Sigma 2-coloring for Sn, n even. Figure 19. Sigma 2-coloring for Sn, n odd.

4. Uniqueness of the Sigma 2-coloring of Sierpiński Gasket Graphs
As in Section 3, use a, b to denote distinct positive integers for which the sets {a+ b, 2a, 2b} and
{2a+ 2b, 3a+ b, 3b+ a, 4a, 4b} are disjoint. We now make the following definitions.

Definition 4.1. Let n ≥ 2 be an integer and let c be a sigma 2-coloring, using the colors a and
b, of Sn. Define the operations r, s, and t as follows:

(i) The coloring rc is obtained by rotating c 120◦ clockwise.

(ii) The coloring sc is obtained by reflecting c along the angle bisector of the lower left corner
vertex.

(iii) The coloring tc is obtained by interchanging the colors a and b.

Also, define G to be the group 〈r, s, t〉 and Gc to be the set {gc : g ∈ G}.

Clearly, G is isomorphic to D3×Z2; hence, it has 12 elements. Moreover, all the elements of Gc
are also sigma 2-colorings of Sn.

Definition 4.2. Let n ≥ 2 be an integer and let c be a sigma 2-coloring of Sn. Define the sigma
2-colorings LL(c),U(c), LR(c) of Sn−1 as follows:

(i) LL(c) is the restriction of c to the lower left Sn−1 subgraph of Sn.
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(ii) U(c) is the restriction of c to the upper Sn−1 subgraph of Sn.

(iii) LR(c) is the restriction of c to the lower right Sn−1 subgraph of Sn.

We also write c = (α, β, γ) to signify that α, β, and γ are sigma 2-colorings of Sn−1 for which
(LL(c),U(c), LR(c)) = (α, β, γ). For instance, the coloring c3 shown in Fig. 15 can be written as
c3 = (c2, tsc2, rc2), where c2 is the coloring shown in Fig. 11.

For Sn, n ≥ 2, we denote by cn the sigma 2-coloring constructed in the proof in Section 3.
Recall that cn follows the forms shown in Figures 18 and 19. In order to prove statement (3) of
Theorem 1.6, we prove the following equivalent statement.

Lemma 4.3. Let a, b be fixed distinct positive integers for which the sets {a + b, 2a, 2b} and
{2a+2b, 3a+ b, 3b+a, 4a, 4b} are disjoint. Then any sigma 2-coloring c of Sn, n ≥ 2, is in Gcn.

Proof. Our proof is by induction. The case n = 2 can be verified easily; that is, the totality of
sigma 2-colorings of S2 is given by Gc2, where c2 is the sigma 2-coloring shown in Fig. 11.

Now, suppose the statement holds for n and let c be a sigma 2-coloring of Sn+1. By the
assumption on the colors a and b, LL(c),U(c), and LR(c) must be sigma 2-colorings of Sn; hence,
by the inductive hypothesis, they belong to the set Gcn.

Case 1. Suppose n is even.
By applying t to c at most once, we can guarantee that the resulting coloring c′ has the lower

left corner vertex colored a; that is, LL(c′) is in {cn, scn, trcn, strcn, tr2cn, str2cn}. Moreover, by
applying s to c′ at most once, we can guarantee that the resulting coloring c′′ has LL(c′′) that is
in {cn, trcn, tr2cn}. Therefore, we can simply assume without loss of generality that LL(c) is in
{cn, trcn, tr2cn}.

Case 1.1. Suppose LL(c) = cn. Since there are only 12 possible choices each for U(c) and
LR(c), it is easy to verify that c = (cn, tscn, rcn). In this case, c = cn+1, which is the sigma
2-coloring constructed in Section 3. Naturally, c = cn+1 ∈ Gcn+1.

Case 1.2. Suppose LL(c) = trcn. In this case, we must have c = (trcn, sr
2cn, scn).

Furthermore, we have

cn+1 = (cn, tscn, rcn) =⇒ rscn+1 = (trcn, rscn, rsrcn).

By applying the property that (sr)2 is the identity, rscn+1 simplifies to c; that is, c ∈ Gcn+1.
Case 1.3. Suppose LL(c) = tr2cn. In this case, we must have c = (tr2cn, trcn, sr

2cn).
Furthermore, we have

cn+1 = (cn, tscn, rcn) =⇒ trcn+1 = (tr2cn, trcn, rscn).

As in Case 1.2., trcn+1 simplifies to c; that is, c ∈ Gcn+1.

Case 2. Suppose n is odd.
Similar to Case 1, we can simply assume without loss of generality that LL(c) is in

{cn, r2cn, trcn}.
Case 2.1. Suppose LL(c) = cn. In this case, c = (cn, r

2cn, tscn). In this case, c = cn+1, which
is the sigma 2-coloring constructed in Section 3. Naturally, c = cn+1 ∈ Gcn+1.

Case 2.2. Suppose LL(c) = r2cn. In this case, c = (r2cn, tscn, tsrcn). Furthermore,

cn+1 = (cn, r
2cn, tscn) =⇒ srtcn+1 = (srscn, tscn, tsrcn).

Hence, srtcn+1 is equal to c; that is, c ∈ Gcn+1.
Case 2.3. Suppose LL(c) = trcn. In this case, c = (trcn, srcn, tr

2cn). Furthermore,

cn+1 = (cn, r
2cn, tscn) =⇒ r2tcn+1 = (trcn, r

2scn, tr
2cn).

Hence, r2tcn+1 is equal to c; that is, c ∈ Gcn+1.
This completes the proof of the lemma and, consequently, of statement (3) of Theorem 1.6.
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5. Conclusion
In this paper, we have determined the sigma chromatic numbers of two families of graphs: the
Sierpiński gasket graphs and the Hanoi graphs. For the Hanoi graphs, our approach involved
showing that, for n ≥ 3, the sigma 2-colorability of Hn+1 implies the sigma 2-colorability of Hn.
On the other hand, for the Sierpiński gasket graphs, we employed a recursive construction of
a sigma 2-coloring of Sn. Moreover, we have proven that this sigma 2-coloring is unique up to
rotations, reflections, and choice of colors. This uniqueness result is the sigma coloring analog
of Klavžar’s uniqueness result for proper 3-colorings of Sn.
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