
Ateneo de Manila University Ateneo de Manila University

Archīum Ateneo Arch um Ateneo

Department of Information Systems &
Computer Science Faculty Publications

Department of Information Systems &
Computer Science

2016

k-d Tree-Segmented Block Truncation Coding for Image k-d Tree-Segmented Block Truncation Coding for Image

Compression Compression

Proceso L. Fernandez Jr
Ateneo de Manila University, pfernandez@ateneo.edu

Ryan Rey M. Daga

Follow this and additional works at: https://archium.ateneo.edu/discs-faculty-pubs

 Part of the Theory and Algorithms Commons

Custom Citation Custom Citation
Daga, R.R.M., Fernandez, P. (2016/04). K-d Tree-Segmented Block Truncation Coding for Image
Compression. MATEC Web of Conferences, 56, Article number 02007.

This Conference Proceeding is brought to you for free and open access by the Department of Information Systems
& Computer Science at Archīum Ateneo. It has been accepted for inclusion in Department of Information Systems
& Computer Science Faculty Publications by an authorized administrator of Archīum Ateneo. For more information,
please contact oadrcw.ls@ateneo.edu.

https://archium.ateneo.edu/
https://archium.ateneo.edu/discs-faculty-pubs
https://archium.ateneo.edu/discs-faculty-pubs
https://archium.ateneo.edu/discs
https://archium.ateneo.edu/discs
https://archium.ateneo.edu/discs-faculty-pubs?utm_source=archium.ateneo.edu%2Fdiscs-faculty-pubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=archium.ateneo.edu%2Fdiscs-faculty-pubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:oadrcw.ls@ateneo.edu

k-d Tree-Segmented Block Truncation Coding for Image Compression

Ryan Rey M. Daga1,2 and Proceso L. Fernandez1
1Ateneo de Manila University, Loyola Heights, Katipunan Ave., Quezon City, Philippines
2University of the Philippines Visayas Tacloban College, Tacloban City, Leyte, Philippines

Abstract. Block truncation coding (BTC) is a class of image compression algorithms whose main technique is the
partitioning of an image into pixel blocks that are then each encoded using a representative set of pixel values. It is
commonly used because of its simplicity and low computational complexity. The Quadtree-segmented BTC (QTS-BTC),
which utilizes a dynamic hierarchical segmentation technique, is among the most efficient in the BTC class. In this study,
we propose a new BTC variant that introduces two ideas: (1) the use of a k-d tree for segmentation and (2) the use of a Mean
Squared Error (MSE) threshold for dynamically determining the granularity of the blocks. We refer to this new BTC variant
as the k-d Tree Segmented BTC (KTS-BTC), and we test this against some of the existing BTC variants by running the
algorithms on a standard image compression dataset. The results show that the proposed variant yields low bit rates of the
compressed images, even outperforming the state-of-the-art QTS-BTC, without a significant reduction in image quality as
measured using the Peak Signal-to-Noise Ratio (PSNR). The utilization of k-d tree for image segmentation is further shown
to have more impact than that of employing the MSE thresholding scheme as a block activity classifier.

1 Introduction
Nowadays, digital images are being used in many
different fields. This has resulted to a continuous
accumulation of stored and transmitted digital images, as
well as an increase in the quality, and hence file size, of a
non-trivial fraction of existing digital images.
Compression techniques are thus becoming increasingly
important because these help reduce the storage
requirements and bandwidth costs.

There are several classes of image encoding schemes
that have been proposed. These include the vector
quantization [1], fractal image compression [2], wavelet
image compression [3], and block truncation coding (BTC)
[4]. In this study, we focus on the last one.

Block truncation coding was originally proposed by
Mitchel et al., in 1979 for grayscale image compression
[4]. This technique divides an image into non-overlapping
blocks, with each block encoded using a representative set
of pixel values. BTC has paved the way for other pixel-
based moment-preserving compression techniques.
Different methods have been introduced to suit both
grayscale and colored images. Absolute moment block
truncation coding (AMBTC) [5], generalized moment
preserving quantization [6], multiple block partitioning [7]
and even the integration of a heuristic such as harmony
search [8] have been introduced.

BTC (and its variants) is a popular choice for
compression because of its low computational cost,
making it suitable for real time multimedia applications. It
is generally able to quickly compress an image without

much loss of image quality. However, BTC has a higher
bit rate for image coding compared to other classes of
compression algorithms. To address this issue, some
proposed image coding schemes have employed
representative patterns to encode bitmaps [9] [10].

Recently, the quadtree segmentation BTC [11] has
been proposed to cut down the bit rate requirements of an
image while maintaining the image quality. This
segmentation technique exploits the spatial similarity
among neighboring pixels in the image, and dynamically
determines the size of the image segments (i.e., non-
overlapping blocks) based on a threshold of difference
between two means.

In this study, we propose a new BTC variant that
extends the ideas from the quadtree segmentation BTC. In
particular, we propose the use of a k-d tree (instead of a
quadtree) for a more flexible segmentation, and the use of
Mean Square Error (MSE), instead of difference of two
means, for thresholding. These concepts are discussed in
greater detail in later sections.

2 Preliminaries
In this section, we cover the important algorithms that can
help in better understanding the quadtree segmentation
BTC, from which several concepts in our proposed new
algorithm are based.

, Web of Conferences DOI: 10.1051/ conf/2016 0MATEC 56 matec 560200)

 ICCAE 2016

20077 (2016

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution

 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

2.1 Block Truncation Coding

In Block Truncation Coding (BTC), an image is first
divided into non-overlapping m×m blocks. Then for each
block, the mean �̅ of the pixel values is computed in the
standard way,

�̅ = �
� ∑ ������ (1)

where n = m
2.

A corresponding m×m bit plane1 is generated by
encoding each pixel in the block by either 1 or 0
depending on its value relative to �̅. Specifically, if the
pixel value is greater than or equal to �̅, it is coded as 1;
otherwise, it is encoded as 0.

The bit values 1 and 0 are mapped to the statistical
moments xH and xL, respectively, which are computed as
follows:

�	 = �̅ +
��
 (2)

�� = �̅ −
��
 (3)

Here, p is the number of 0’s in the bit plane, q is the
number of 1’s, and

 = ��
� ∑ (�� − �̅)����� (4)

The bit rate of the resulting compressed greyscale
image depends on the size of all blocks. For the typical
4×4 block size, each of the 16 pixels is encoded using 1
bit on the bit plane, and an overhead of two 8 bits are
needed for the xH and xL representative values. Thus, 32
bits are used to encode a 16-pixel block, resulting in a bit
rate of 2 bits per pixel (bpp).

2.2 Absolute Moment Block Truncation Coding

The Absolute Moment Block Truncation Coding
(AMBTC) is a simple and fast variant of BTC that has
been proposed for color images [12][5]. A given color
image in RGB format is first decomposed into three
greyscale images corresponding to the red, green and blue
channels.

The encoding for each image channel then follows the
BTC technique, except for the computation of the two
statistical moments. The formula used in AMBTC are
given in Equations 5 and 6.

�̅	 = �
 ∑ ������̅ (5)

�̅� = �
� ∑ ������̅ (6)

where p and q are still the number of 0’s and 1’s,
respectively, in the generated bit plane.

The resulting bit rate for images compressed using
AMBTC is similar to that of the BTC. Using 4×4 blocks,
the AMBTC bit requirements is 2 bpp for greyscale

images and 6bpp for three-channel color images.
Moreover, the AMBTC produces better image quality
than BTC, where quality is measured in terms of Peak
Signal-to-Noise Ratio (PSNR):

���� = 10 log�� �����
���� (7)

In the above formula, MSE refers to the Mean
Squared Error, which compares each pixel value xi,j at
position (i, j) in the original image with the corresponding
pixel value yi,j in the reconstructed image. In this study,
since all input data images have dimension 512×512, the
MSE is computed using the formula

!�" = ∑ ∑ #��,$%&�,$'�*--$./*--�./
(���)(���) (8)

2.3 Quadtree Segmented Block Truncation
Coding

The quadtree segmented BTC is a hierarchical
segmentation technique that partitions an image into
variable-sized square blocks. During the quadtree
segmentation process, a series of binary decisions with
respect to different threshold values is made. A block type
classifier is employed to determine the block activity, and
it is usually based on a statistical information [11]. If a
block is inactive (e.g., low variance) the segmentation of
the given block is terminated, otherwise the block is
further divided into four sub-blocks.

Chen et al. recently proposed the quadtree-segmented
AMBTC [11]. In this coding scheme, a maximum of
three-level quadtree structure, an example of which is
shown in Figure 1, is imposed on the segmentation. The
procedure of quadtree-segmented AMBTC is as follows:
Step 1: Decompose the color image into three grayscale
images using the red, blue and green channels of the
image.
Step 2: Partition each grayscale image into image blocks
of size 16 ×16.
Step 3: Select an unprocessed 16 ×16 image block, and
calculate two quantization levels �̅	 and �̅� using the
formula in AMBTC.
Step 4: If |�̅	 − �̅�| ≤ 34�"�4567, then encode this 16
×16 block using its block mean and proceed to Step 8.
Otherwise, subdivide this block into four 8×8 blocks.
Step 5: While there is still an unprocessed 8×8 block,
select one such block, and calculate the mean and
calculate two quantization levels �̅	 and �̅� . Otherwise,
proceed to Step 8.
Step 6: If |�̅	 − �̅�| ≤ 34�"�4567, then encode this 8
×8 block using its block mean and proceed to Step 5.
Otherwise, subdivide this block into four 4×4 blocks.
Step 7: For each 4×4 image block, calculate the mean
and calculate two quantization levels �̅	 and �̅� . If
|�̅	 − �̅�| ≤ 34�"�4567, then encode this 8 ×8 block
using its block mean. Otherwise, encode this block using
a 4×4 bit plane. Following the technique in AMBTC.
Return to Step 5 after processing all 4×4 blocks.

, Web of Conferences DOI: 10.1051/ conf/2016 0MATEC 56 matec 560200)
 ICCAE 2016

20077 (2016

2

Step 8: If there is still any 16×16 blocks to be processed,
return to Step 3.

We refer to this BTC variants as QTS-BTC in this
paper. An example of a block segmentation in QTS-BTC
is shown in Fig 1. Here, a 16×16 block is segmented into
four 8×8 blocks, two of which are each further
subdivided into four 4×4 blocks.

The bit rate in QTS-BTC is typically better than in
AMBTC (or BTC) since it is possible to represent an
entire block with a single 8-bit number instead of an m×m

bit plane plus two 8-bit quantization values. However, the
PSNR values are typically a little bit better in AMBT
(BTC).

Figure 1. Example of a three-level quadtree segmentation

3 Proposed Compression Technique
In this study, we improve the QTS-BTC performance by
applying two modifications:

1. The use of a k-d tree for the segmentation of a
 block
2. The use of the inequality MSE ≤ THRESHOLD t
decide whether or not to subdivide a block further.

We refer to this new BTC variant as k-d tree-
segmented BTC, or KTS-BTC. Figure 2 shows the overall
process of the proposed image coding scheme.

Figure 2. General flow of the proposed compression technique
An input color image is initially decomposed into

three greyscale images corresponding to the three color
channels, and then each greyscale image is partitioned
into non-overlapping 16×16 blocks. For each block, the
block mean is computed and the block activity is
determined by calculating the MSE of replacing all pixel

values by the mean. If a block is inactive (i.e., MSE ≤
THRESHOLD), then the block is encoded using its block
mean. Otherwise, it is partitioned into two equally-sized
sub-blocks.

The partitioning of a block follows the k-d tree
partitioning of a 2-dimensional space. That is, the
partitioning is alternately done on the x and y axes: a
16×16 block may be divided vertically (producing
rectangular 8×16 blocks), then horizontally (producing
8×8 blocks, then vertically), then vertically (rectangular
4×8 blocks), and then finally horizontally (square 4×4
blocks).

The smallest blocks are 4×4 blocks. Each of theses
4×4 blocks is encoded either using the block mean if the
block is inactive, or using a 4×4 bit plane following the
AMBTC technique if the block is active. This process
terminates when all blocks have been encoded.

Figure 3 shows an example of a k-d tree segmentation
of a block. It should be noted that any block segmentation
using the quadtree can be achieved using k-d tree
segmentation (albeit using more levels in the tree, and
thus more bits in the encoding), but the reverse is not true.
Since there is possibility to encode an m×2m vertical
blocks with a single pixel value, which is not allowed in
the QTS-BTC, then there is opportunity to have a lower
overall bit rate. This, however, comes at the risk of
reducing the PSNR. This risk is managed by using an
MSE threshold, which may be set to some low value
based on the desired PSNR.

Figure 3. Example of a k-d tree segmentation of a 16×16

To encode the resulting variable-sized blocks properly,
we use a bit flag 1 to indicate that a block is to be divided
further, and 0 otherwise. Table 1 shows the prefixes used
for the different block types, as well as the effective bit
rates (in bits per pixel) for both greyscale and color
images.

The number of bits used in the computation of the bit
rates may be determined by careful calculations. For
example, an inative 8×8 block uses the prefix 110. The
first bit (1) indicates that the main block (16×16) is
divided further. This 1-bit overhead cost is, however,
shared among four 8×8 blocks. The second bit (1) implies
that the 8×16 block is subdivided further, and this 1-bit
overhead cost is shared by two. Finally, the last prefix bit
(0) indicates that the 8×8 block is inactive, and this 1-bit
overhead is shouldered entirely by the 8×8 block.
Together with the 8-bit mean, the number of bits required
to represent an inactive 8×8 block is this �8 + �

� + 1 + 8 =

(b) A segmentation of a
16×16 blocks

(b) A segmentation of
16×16 block

(a) Corresponding three-
level quadtree

(a) Corresponding k-d tree

, Web of Conferences DOI: 10.1051/ conf/2016 0MATEC 56 matec 560200)
 ICCAE 2016

20077 (2016

3

9.75 bits. The values for the other block types can be
similarly analyzed,

Table 1. Effective bit rates (in bpp) of the different block types
on 1-channel and on 3-channel images

Block Type Prefix Num of

Bits

Eff. Bit rate

1-ch 3-ch

16×16 0 9 0.035 0.105
8×16 10 9.5 0.074 0.223
8×8 110 9.75 0.152 0.457
4×8 1110 9.875 0.309 0.926
4×4, inactive 11110 9.9375 0.621 1.863
4×4, active 11111 33.937 2.123 6.369

4 Results and Discussion
To test the performance of the proposed KTS-BTC, we
run it on a set of standard test images and compared the
bit rates and PSNR values of the generated images against
those produced by the AMBTC and QTS-BTC. These
images, shown in Figure 4, were used in a previous study
by Che et al. [11] and were taken from [13].

Figure 4. Color test images (512×512)

4.1 Compressed Image Results

Figure 5 shows some compressed images using AMBTC,
QTS-BTC and the proposed KTS-BTC. There is no
noticeable difference among the images, and this is
validated by the small differences in the computed PSNR
values.

Table 2 details the bit rates of the compressed images
produced using these 3 techniques. The threshold values
for the KTS-BTC and QTS-BTC used here are both 5.
The proposed KTS-BTC yielded the lowest bit rate
requirement. It was able to reduce the bit rates of the
compressed images produced by AMBTC and QTS-BTC
by an average of 22.62% and 14.83%, respectively.

As may be expected, the lower bit rate in KTS-BTC is
achieved at the cost of slightly inferior PSNR (see Table
3). However, the difference is quite minimal, e.g., the
average PSNR value from the AMBTC was reduced by
about 0.53% only.

Figure 5. Example of compressed images, using different
compression techniques, with their corresponding PSNR values

Table 2. Bit rate requirements of color images using different
image coding schemes

Image AMBTC Quadtree k-d Tree

Airplane 6 4.175 3.71
House 6 5.103 4.844
Lena 6 5.989 5.293
Peppers 6 6.02 5.696
Splash 6 5.555 3.305
Tiffany 6 5.865 5.009
Average 6 5.451 4.643

Table 3. PSNR (dB) of color images using different image
coding schemes

Image AMBTC Quadtree k-d Tree

Airplane 32.413 32.279 32.253
House 30.498 30.480 30.461
Lena 33.109 33.112 32.995
Peppers 32.701 32.709 32.654
Splash 36.158 36.094 35.625
Tiffany 35.308 35.310 35.145
Average 33.365 33.331 33.189

These results indicate that the proposed KTS-BTC
compression technique is generally better than QTS-BTC
and AMBTC. We investigate further the effect of the two
introduced ideas in KTS-BTC.

4.2 Effect of k-d Tree Segmentation

To determine the impact of the use of the k-d tree for
segmentation, we implemented the KTS-BTC with a
block activity classifier that uses |�̅	 − �̅�| ≤
34�"�4567 to determine when to perform further
segmentation.

Table 4 shows that across varying threshold values,
the average bit rate is better in KTS-BTC, while the
average PSNR value is slightly better in QTS-BTC.
Computing the ratio of PSNR to bit rate reveals the
superiority of the KTSBTC. Figure 6 shows a graph of
this ratio across the possible threshold values.

Table 4. PSNR and BPP at different threshold values
Threshold QTS-BTC KTS-BTC

PSNR BPP PSNR BPP
5 33.208 4.745 33.189 4.643

10 32.312 2.772 32.228 2.664
15 31.335 1.975 31.191 1.879
20 30.588 1.551 30.217 1.463
25 29.526 1.28 29.307 1.199

(c) Airplane

(32.41332AMBTC:))a 32.27932Quadtree:))bb(c)c(kk-d Tree: 32.253

(b) House

(f) Peppers

(a) Lena

(e) Splash (d) Tiffany

, Web of Conferences DOI: 10.1051/ conf/2016 0MATEC 56 matec 560200)
 ICCAE 2016

20077 (2016

4

Figure 6. PSNR to BPP ratios at different threshold values using
quadtree and k-d tree segmentation schemes

4.3 Effect of MSE Thresholding

To determine the impact of using the MSE thresholding,
we implemented an MSE-thresholded QTS-BTC. To
compare the results of the two QTS-BTC variants
properly, it is inappropriate to look at the PSNR to BPP
ratio across various threshold values, since the
thresholding techniques are different. Instead, we plot the
PSNR vs BPP curves. Figure 7 shows that the MSE
thresholding is only minimally better.

Figure 7: PSNR vs Bit Rate curves of QTS-BTC using the two
different thresholding schemes

5 Conclusion
In this paper, we proposed a new BTC compression
technique which we refer to as the k-d Tree Segmented
BTC (KTS-BTC). This variant introduces two ideas: (1)
the use of a k-d tree for segmentation and (2) the use of
MSE for block activity thresholding.

The proposed algorithm was compared against the
AMBTC and the state-of-the-art QTS-BTC. The
superiority of KTS-BTC was established through actual
implementation on a standard dataset. The results showed
a significant improvement in bit rates, at the cost of a
minimal reduction in PSNR values. A further
investigation of the effects of the two introduced ideas
showed that the improvement is mainly due to the use of
k-d trees for segmentation.

Future studies can explore dynamically selecting a
better default k-d tree-based initial partitioning (horizontal
versus vertical), the use of bigger blocks, and the use of
other block activity thresholding schemes.

References
1. C.C. Chang, Y.C. Hu, Consumer Electronics, IEEE

Transactions on 44, 1201 (1998)
2. Y. Fisher, Fractals 2, 347 (1994)
3. B.E. Usevitch, Signal Processing Magazine, IEEE 18,

22 (2001)
4. E.J. Delp, O.R. Mitchell, Communications, IEEE

Transactions on 27, 1335 (1979)
5. M.D. Lema, O.R. Mitchell, Communications, IEEE

Transactions on 32, 1148 (1984)
6. D. Halverson, N. Griswold, G. Wise, Acoustics,

Speech and Signal Processing, IEEE Transactions on
32, 664 (1984)

7. R.R.M. Daga, P. Fernandez, Multi-partition Block

Truncation Coding for Image Compression, in
NCITE 2015 Proceedings of the National Conference

of Information Technology Education (PSITE, 2015),
pp. 35 – 40

8. R.R.M. Daga, J.P.T. Yusiong, IJCSI International
Journal of Computer Science Issues 9 (2012)

9. P. Nasiopoulos, R.K. Ward, D.J. Morse,
Communications, IEEE Transactions on 39, 1245
(1991)

10. B.C. Dhara, B. Chanda, Pattern Recognition 37, 2131
(2004)

11. W.L. Chen, Y.C. Hu, K.Y. Liu, C.C. Lo, C.H. Wen,
International Journal of Signal Processing, Image
Processing and Pattern Recognition 7, 65 (2014)

12. S. Vimala, M. Sathya, K.K. Devi, International
Journal of Computer Applications 51, 48 (2012)

13. University of southern california - signal and image

processing institue image database,
http://sipi.usc.edu/database/, Accessed: 2015-10-20

, Web of Conferences DOI: 10.1051/ conf/2016 0MATEC 56 matec 560200)
 ICCAE 2016

20077 (2016

5

	k-d Tree-Segmented Block Truncation Coding for Image Compression
	Custom Citation

	/var/tmp/StampPDF/jwFbAaI2e1/tmp.1588845122.pdf.bsZuk

