
Ateneo de Manila University Ateneo de Manila University

Archīum Ateneo Arch um Ateneo

Department of Information Systems &
Computer Science Faculty Publications

Department of Information Systems &
Computer Science

7-2018

Time Advancement and Bounds Intersection Checking for Faster Time Advancement and Bounds Intersection Checking for Faster

Broad-Phase Collision Detection of Paired Object Trajectories Broad-Phase Collision Detection of Paired Object Trajectories

Proceso L. Fernandez Jr
Ateneo de Manila University, pfernandez@ateneo.edu

Mary Aveline Germar

Follow this and additional works at: https://archium.ateneo.edu/discs-faculty-pubs

 Part of the Theory and Algorithms Commons

Custom Citation Custom Citation
Germar, M.A., Fernandez Jr., P. (2018/05). Time Advancement and Bounds Intersection Checking for
Faster Broad-Phase Collision Detection of Paired Object Trajectories. International Journal of Advances in
Electronics and Computer Science, 5(5), 2394-2835.

This Conference Proceeding is brought to you for free and open access by the Department of Information Systems
& Computer Science at Archīum Ateneo. It has been accepted for inclusion in Department of Information Systems
& Computer Science Faculty Publications by an authorized administrator of Archīum Ateneo. For more information,
please contact oadrcw.ls@ateneo.edu.

https://archium.ateneo.edu/
https://archium.ateneo.edu/discs-faculty-pubs
https://archium.ateneo.edu/discs-faculty-pubs
https://archium.ateneo.edu/discs
https://archium.ateneo.edu/discs
https://archium.ateneo.edu/discs-faculty-pubs?utm_source=archium.ateneo.edu%2Fdiscs-faculty-pubs%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=archium.ateneo.edu%2Fdiscs-faculty-pubs%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:oadrcw.ls@ateneo.edu

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-5, May.-2018
http://iraj.in

Time Advancement and Bounds Intersection Checking for Faster Broad-Phase Collision Detection of Paired Object Trajectories

4

TIME ADVANCEMENT AND BOUNDS INTERSECTION CHECKING
FOR FASTER BROAD-PHASE COLLISION DETECTION OF PAIRED

OBJECT TRAJECTORIES

1MARY AVELINE GERMAR, 2PROCESO FERNANDEZ

Department of Information Systems and Computer Science Ateneo de Manila University Philippines

Abstract- For self-driving mechanisms, the motion planning requires a reasonably fast algorithm for collision detection
along the trajectories. We present three algorithms for the detection of collision among objects with predefined trajectories.
The first algorithm uses the intersection of the path’s bounding box. The second algorithm sequentially checks for
intersection between each pair of corresponding axis-aligned bounding boxes (AABB) from the trajectories of the two paths.
Lastly, the latter algorithm is modified using iterative time advancement to an estimated earliest possible collision time.
Simulation experiments on a variety of pair trajectories demonstrate a significant speedup of the proposed algorithms over
the existing baseline algorithm. They are, therefore, preferable alternatives for faster broad-phase collision detection in
applications such as motion planning.

I. INTRODUCTION

Collision detection is commonly used in video games,
simulations, and robotics. For motion planning,
however, collision detection is still at its infancy.
Common real-time collision detection algorithms,
especially in video games, are used to determine
collisions within a short span of time. For motion
planning, however, the entire trajectories of the
objects must be considered for early collision
avoidance. Since trajectories may be curved, there is
an additional complexity of handling possible
collisions in between the initial and final orientations
of the objects.

There are two stages of collision detection: broad-
phase and narrow-phase. First, the broad-phase stage
selects the candidates for the narrow-phase by
removing objects that are certain to not intersect. In
this stage, the object shapes may be simplified into
bounding volumes. Then, the candidate objects
undergo a narrow-phase collision detection that uses
the exact shapes and the precise time of movements
to determine if there is collision.

For the broad-phase collision detection, a popular
technique is workspace-time bounding volume
hierarchy (BVH) that contains a collection of
bounding volumes for the object at specified time
segments [3]. The bottleneck in this technique,
however, lies in the creation of the BVH tree. To
eliminate such bottleneck, an array or list data
structure may be used to identify the configuration of
the object in sequential order. With this, the objects
can be directly checked for collision in each timestep.
In addition to the sequential data structure, the earliest
possible collision time can also be used to advance the
collision checking, and skip the time frames that are
sure to have no collision. When a collision is detected
on the advanced time segment, an early exit could be
achieved.

II. RELATED STUDIES

Collision detection algorithms are often separated
into two phases [1]. The initial phase, called the
broad phase, uses basic shapes, such as spheres or
boxes, which are large enough to encapsulate the
entire object. These shapes are then checked for
collision to remove the non-colliding objects and
retain only the candidate pairs of objects for further
checking. Afterwards, the narrow phase considers the
actual shape and orientation of the candidate pairs.
This phase is often more computationally expensive
depending on the shape of the object.

A. Broad-phase Collision Algorithms
In the broad-phase collision detection, the two most
common broad-phase techniques are spatial
partitioning and bounding volume hierarchies.
In spatial partitioning, the whole space is divided into
sections that are tested for collision. The simplest
method is the sort-and-sweep techniques [1]. Axis-
aligned bounding boxes (AABB) for the shapes are
sorted according to either the x-axis or y-axis. Then,
the bounds of the boxes are checked for overlaps in
the selected axis. However, the clustering of the
objects on an axis can make this method ineffective.
Instead of focusing on a single axis, other spatial
partitioning methods such as the k-d trees and binary
spatial partitioning (BSP) trees use all the dimensions
[10]. Since the space and not the object themselves are
subdivided, the same pair of objects may be detected
more than once on different partitions.

On the other hand, bounding volume hierarchy (BVH)
removes the redundancy because the BVH considers
the object itself and partitions its trajectory according
to the bounding volume for the object in each
partition. Consequently, the number of comparisons is
reduced in a logarithmic scale. The commonly used
shapes of bounding volumes are AABB, circle, and an
oriented bounding box. There is no optimal shape for

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-5, May.-2018
http://iraj.in

Time Advancement and Bounds Intersection Checking for Faster Broad-Phase Collision Detection of Paired Object Trajectories

5

all cases because the results depend on the shape and
orientation of the objects being compared [1].
Compared to the BSP, the BVH may take longer to
build depending on the tree depth. However, each
object is only checked once for collision.
Due to the different advantages of both algorithms, the
combination of spatial partitioning and BVH has been
proposed as a Split BVH (SBVH) [4]. For each split,
the SBVH decides whether to use a spatial split like
BSP or an object split common in BVH trees.

B. Narrow-phase Collision Algorithms
The pitfall of the broad-phase algorithms is the
possibility of false positives, since they often use the
simplified version of an object’s contours.
Consequently, the narrow-phase collision algorithms
use the actual shape of the object to provide more
accuracy.

An example of the narrow-phase collision algorithm is
the conservative time advancement (CA) [11, 12]. The
CA can be used to calculate the earliest time of
collision in between the initial time and final time by
repeatedly advancing the objects by a given delta time
(∆t) in between. The delta time is computed using the
closest distance between the objects, since the time is
a function of the distance. In the controlled
conservative time advancement [8], an interpolation is
used on candidate objects to determine the ∆t.
Unfortunately, the speed of the algorithm depends on
several factors, such as the number of the time
divisions, the threshold minimum distance, and the
maximum iteration count. Moreover, the conservative
time advancement is discrete and may fail to cover the
intermediate positions between time steps if the object
moves very fast. The main solution to this problem is
to divide the ∆t into smaller partitions, but this
increases the computation time.

For narrow-phase collision detection, another issue is
the actual shapes of the objects. AABBs can be easily
checked for collision by determining the maximum
and minimum values on each axis. For complex
polygons, however, more complex algorithms are
required. The Gilbert–Johnson–Keerthi (GJK)
distance algorithm can be used for collision checking
of convex polygons [9].

C. Data Structures
The polygonal objects are often represented as a set of
points. For the broad-phase, however, the object
silhouette is simplified using bounding volumes. For
selecting a bounding volume, the things considered
are: “inexpensive intersection tests, tight fitting,
inexpensive to compute, easy to rotate and transform,
and use little memory [1].”

In bounding volumes, the shape determines the
necessary data. For example, a sphere is represented
by the position of the center as a point with its

corresponding coordinates, and its radius [1]. Another
more common representation of a bounding box is the
axis-aligned bounding boxes (AABB), which means
that each edge of the boxes is parallel to an axis.

Besides the shape representation, a given algorithm
defines the necessary data structure. For example,
both BSP and BVH use trees to separate the elements
of the spatial and object partitions, respectively. The
contents of those trees, however, depend on the
algorithm used. In BSP, the tree contains the whole
objects; whereas, in BVH, the tree is for a single
object that is partitioned into its smaller parts.

Another important consideration is the representation
of the time element. To represent the area covered by
an object over a span of time, swept volumes are used
[13]. These swept volumes can be easily placed in the
workspace, which is the two-dimensional space for
the objects. However, the swept volumes are only
accurate when it covers a short span of time. In order
to represent a non-linear trajectory, a sequence of
swept volumes is necessary. Thus, the workspace-time
obstacle region (WT) is used by Schwesinger et al [3].
The workspace-time allows each object trajectory to
be represented with the respective object configuration
and time configuration.

D. Motion Planning
Motion planning requires an evaluation of the entire
paths of the objects. This means that collision must be
detected in multiple time steps throughout the time
span of the object’s entire path.

Ferguson et al. [2] proposed a technique that has three
stages. First, the axis-aligned bounding volume of
each paths are compared to one another for collision.
The second stage uses individual time step
advancement using a circular bounding volume.
Starting from an initial time, the objects are moved by
time step into the next position until either a collision
between the circular bounding volumes is detected or
the path is completed without collision. If there is
collision, the last stage uses an oriented bounding box
for each time step in a similar advancement technique
in the previous stage.
The algorithm considers the time in the collision
detection of paths. However, the proposed method
uses discrete collision detection, which may fail to
detect collision in between the time steps. Moreover,
the multiple time step advancement may involve more
computation time especially when the collision occurs
at the end of the path.

An alternative approach has considered the time by
using a workspace-time representation of the
bounding volume hierarchy [3]. In the algorithm, the
time becomes an additional dimension to the position
of the object. The technique also considers continuous

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-5, May.-2018
http://iraj.in

Time Advancement and Bounds Intersection Checking for Faster Broad-Phase Collision Detection of Paired Object Trajectories

6

collision detection using convex hulls that cover the
area between the time steps. The main improvement
of the technique comes from the usage of BVH trees
for each path. The BVH trees reduce the comparisons
required between each object pair.
The given technique, however, requires the creation of
a bounding volume hierarchy for each path, and
subsequently, a comparison of each of the BVH
tree.In this study, we consider improving the broad-
phase collision detection for motion planning.

III. TECHNIQUES

In this paper we propose three algorithms that use the
following techniques: the bounding volume
intersection (BVI), synchronized intersection (SI), and
the speed-time advancement (STA). For each of these
methods, the continuous collision detection uses a
workspace-time (WT) axis aligned boxes (AABBs),
which we describe here first.

A. Workspace-Time AABBs
Since the trajectory of an object may be curved,
getting the positions at the initial and final times may
fail to include a portion of the curve. Consequently,
the path area is divided according to a time step. For
each segment, the position of the object in the
minimum and maximum times of the time step is
computed. Then, the vertices are gathered to
determine the maximum and minimum values for
each axis. These values determine an AABB for the
time step, as illustrated by a dashed box in Fig. 1.

Figure 1: WT-AABB

The area covered by the entire path is then considered
by gathering all the AABBs from the initial time to
the multiple of the time step that is greater than or
equal to the maximum time of movements for all
paths. The collection of these boxes is then called the
workspace-time (WT) AABBs (See Fig. 1).

B. Bounding Volume Intersection Algorithm
The bounding volume intersection (BVI) algorithm
eliminates the WT-AABBs that are certain to not
intersect. This is done through the following steps:

Figure 2: Intersection WT-AABBs

1. The bounding volumes of entire paths are

obtained. For this stage, the minimum and
maximum bounds of each path is obtained from
all its WT-AABBs.

2. Then, the bounding volume of the intersection
between the two object paths is obtained using
the minimum and maximum values of the two
paths’ bounding volumes.

3. The WT-AABBs of the object trajectories
within the intersection are then used for the
BVH collision detection.

Depending on the bounding volume intersection, the
AABBs for the BVH tree creation and collision
detection would ideally reduce the computation time
for collision detection.

C. Synchronized Intersection Checking
Since the WT-AABBs of each path is an array of
AABBs, the synchronized intersection (SI) technique
can take advantage of the WT-AABBs with an
ordered time sequence. In each time step, the SI
checks for the of WT-AABB pair of each trajectory
for intersection. The computation complexity will
only loop once through all WT-AABB pairs, in which
each loop will have a basic AABB intersection test.

Figure 3: Synchronized Intersection (SI) Algorithm

D. Speed-Time Advancement
Like the BVI, the speed-time advancement (STA)
algorithm also attempts to reduce the WT-AABBs. In
contrast to the SI, the main principle of the STA is to

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-5, May.-2018
http://iraj.in

Time Advancement and Bounds Intersection Checking for Faster Broad-Phase Collision Detection of Paired Object Trajectories

7

quickly advance through the earliest possible time of
collision and check for actual movement from the
calculated earliest possible collision time. If the
earliest possible time of collision is within the current
time step or the immediate next time step, the
advancement is just minimal. Consequently, the SI is
used for the succeeding WT-AABBs. The STA is a
loop that stops when one of the following conditions
is met: collision is detected or the end of the paths is
reached.

STA is accomplished according to the following steps:

1. The minimum distance between the two
AABBs is obtained for both the x-axis and y-
axis. Since the formula for the actual distance
has a computationally costly square root
function, we simply estimate the distance
using the maximum between the x and y
distances.

݁ܿ݊ܽݐݏ݅ܦ ݈ܽݑݐܿܣ
= ඥ(ݔଵ − ଶ)ଶݔ + ଵݕ) − ଶ)ଶݕ

݁ܿ݊ܽݐݏ݅ܦ ݀݁ݐܽ݉݅ݐݏܧ
= max (|ݔଵ − ,|ଶݔ ଵݕ|
− (|ଶݕ

where(ݔଵ,ݕଵ) ܽ݊݀ (ݔଶ,ݕଶ) are the closest points from
their respective AABBs

2. The estimated distance together with the

maximum speeds of each object are used to
compute the earliest possible time for a
collision between the AABBs. This step
disregards the actual direction of the WT-
AABB, in order again to simplify the
computations.

3. Both objects are then advanced from the
current time to the earliest possible collision
time.

Figure 3: WT-AABBs at initial time

The advancement is done easily because the
uniform time step indexing in the vectors
containing the space-time AABBs enables
quick computation for the correct target index.

4. Steps 1-3 are repeated until one of the
following conditions is met:

a. If the earliest time of collision is the current
or immediate next time step, SI will be used
henceforth.

b. The WT-AABBs of the objects collide at the
calculated earliest collision time.

Figure 4: Collision detected

c. The end time is reached without collision

Figure 5: End of Path Reached

Figure 6: Speed-Time Advancement (STA) algorithm

IV. METHODOLOGY

For this study, the 2D shape representation of the top
view of the object is considered. The third dimension
is the time elapsed from the start of the object’s path.

A. Algorithms
Different combinations of the mentioned techniques
are used to form the algorithms used proposed in this
study. The baseline algorithm is the BVH tree using
the median as the splitting point. The following
algorithms are proposed:

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-5, May.-2018
http://iraj.in

Time Advancement and Bounds Intersection Checking for Faster Broad-Phase Collision Detection of Paired Object Trajectories

8

1. The first algorithm uses both BVI and BVH
(BVI-BVH). The intersection of the volumes is
obtained, and then used for the BVH.

2. The second algorithm uses SI only.
3. The third algorithm is STA, which could revert

to SI when the earliest possible time of
collision is within the current time step.

B. Data Set
The data set contains several test cases, with a pair of
trajectories for each test. The simulations used two
kinds of paths: straight and curved. For both kinds of
paths, the experiment tested the following collision
scenarios: (1) no intersection, (2) no collision but with
WT-AABB intersection, and (3) collision cases. For
straight path, the collision cases include collision at
the start, middle, and end of the path. For the curved
paths, the start and end points are randomly generated.

Then, cubic spline interpolation is used to create the
series of points along the curve.

C. Simulations
The simulations test the performance of the proposed
algorithms compared to the reference BVH algorithm
that includes tree creation and comparison. The tests
were run 30 times for each scenario, and the lowest,
average, and highest execution times for each scenario
were recorded.

V. RESULTS AND ANALYSIS

For all paths, the BVI-BVH, SI, and STA algorithms
performed better than the standard BVH. In general,
the SI and STA are better than the BVI-BVH.
Comparing the SI and STA, however, both average
execution times are around the same range with the
STA just slightly faster in most cases.

Table 1: Results for Straight Path Collisions (Execution time in nanoseconds)

Table 2: Curve Paths Collision Results (Execution time in nanoseconds)

Table 3: Results for No Collision (Execution time in nanoseconds)

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-5, May.-2018
http://iraj.in

Time Advancement and Bounds Intersection Checking for Faster Broad-Phase Collision Detection of Paired Object Trajectories

9

When there is no collision, there are two possible
scenarios. First, when there is an intersecting area in
the straight paths for the BVI, the performance is
better than the collision cases. When there is no
intersection on the parallel paths, the BVI significantly
performed better than the intersection cases.

Figure 7: Separated Arcs (Curve 2)

On the curve paths, the SI and STA have more
significant speedup than the BVI-BVH algorithm.
Because of the curved movements, the BVI-BVH
tends to include a large portion of some paths or in
some cases, even includes the whole trajectory of one
object. If the intersection cuts off an arc from a
trajectory, the resulting BVH may be significantly
unbalanced in terms of time coverage for those that
include the bounding boxes on the both sides of the
split arc. Consequently, the larger time area may
detect more collision on the tree hierarchy rather than
an early rejection on the early levels of the tree.

On the other hand, SI and STA performed better
because these can detect the earliest collision without
the need to create BVH trees. The STA also
strategically advances to the next possible collision
time without the false positives on the early levels of
the BVI-BVH algorithm. The STA is slightly faster
than SI in most cases, but the difference does not seem
significant because the resulting ranges of time values
are overlapping with one another. For the STA, the
computation of the earliest possible time reduces the
benefit of the time advancement. In SI, there is no
such computation, but a direct comparison of
corresponding AABBs in the array.

CONCLUSION

In this paper we propose three algorithms for broad-
phase collision detection of paired object trajectories.
These algorithms – BVI-BVH, SI, and STA – have
been shown, through simulation, to perform better
than the standard BVH. However, the performance of
the BVI-BVH relies heavily on the trajectory shapes
and may perform poorly if the resulting intersection
between the trajectories covers a large number of the

WT-AABBs. The SI and STA are faster than the BVI-
BVH because they take advantage of the array data
structure for the sequence of WT-AABBs. Unlike the
BVI, the SI is unaffected by the shapes of the
trajectories. Finally, the STA performs slightly better
than the SI, based on average computation times.
However, the range of computation times of the SI
and STA are very similar because of the mentioned
tradeoffs in the computations. Future research may
explore further fine-tuning these algorithms.

REFERENCES

[1] Ericson, C. (2004). Real-time collision detection. CRC
Press.

[2] Ferguson, D., Darms, M., Urmson, C., & Kolski, S.
(2008, June). Detection, prediction, and avoidance of
dynamic obstacles in urban environments. In Intelligent
Vehicles Symposium, 2008 IEEE (pp. 1149-1154).
IEEE.

[3] Schwesinger, U., Siegwart, R., & Furgale, P. (2015,
May). Fast collision detection through bounding volume
hierarchies in workspace-time space for sampling-based
motion planners. In Robotics and Automation (ICRA),
2015 IEEE International Conference on (pp. 63-68).
IEEE.

[4] Stich, M., Friedrich, H., & Dietrich, A. (2009, August).
Spatial splits in bounding volume hierarchies. In
Proceedings of the Conference on High Performance
Graphics 2009 (pp. 7-13). ACM.

[5] Bonsai: Rapid Bounding Volume Hierarchy Generation
using Mini Trees. (2015). Journal of Computer
Graphics Techniques (JCGT), (3), 23.

[6] Ayellet, T., Ilan, S., & David P., D. (2013). Temporal
Coherence in Bounding Volume Hierarchies for
Collision Detection.

[7] A fast spatial partition method in bounding volume
hierarchy. (2013). 2013 IEEE 4th International
Conference on Software Engineering and Service
Science, Software Engineering and Service Science
(ICSESS), 2013 4th IEEE International Conference on,
15.

[8] Tang, M., Kim, Y. J., & Manocha, D. (2009, May). C 2
A: controlled conservative advancement for continuous
collision detection of polygonal models. In Robotics
and Automation, 2009. ICRA'09. IEEE International
Conference on (pp. 849-854). IEEE.

[9] Gilbert, E., Johnson, D., & Keerthi, S. (1987, March). A
fast procedure for computing the distance between
complex objects in three space. In Robotics and
Automation. Proceedings. 1987 IEEE International
Conference on (Vol. 4, pp. 1883-1889). IEEE.

[10] Naylor, B., Amanatides, J., & Thibault, W. (1990).
Merging BSP trees yields polyhedral set operations.
ACM Siggraph Computer Graphics, 24(4), 115-124.

[11] Mirtich, B. V. (1996). Impulse-based dynamic
simulation of rigid body systems. University of
California, Berkeley.

[12] Mirtich, B. (2000, July). Timewarp rigid body
simulation. In Proceedings of the 27th annual
conference on Computer graphics and interactive
techniques (pp. 193-200). ACM Press/Addison-Wesley
Publishing Co..Chicago

[13] Xavier, P. G. (1997, April). Fast swept-volume distance
for robust collision detection. In Robotics and
Automation, 1997. Proceedings., 1997 IEEE
International Conference on (Vol. 2, pp. 1162-1169).
IEEE

	Time Advancement and Bounds Intersection Checking for Faster Broad-Phase Collision Detection of Paired Object Trajectories
	Custom Citation

	tmp.1588844679.pdf.1GhlS

