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Improving the vector auto regression technique for time-series link
prediction by using support vector machine

Jan Miles Co and Proceso Fernandez

Ateneo de Manila University, Department of Information Systems and Computer Science, Quezon City, Philippines

Abstract. Predicting links between the nodes of a graph has become an important Data Mining task because of its
direct applications to biology, social networking, communication surveillance, and other domains. Recent literature in
time-series link prediction has shown that the Vector Auto Regression (VAR) technique is one of the most accurate
for this problem. In this study, we apply Support Vector Machine (SVM) to improve the VAR technique that uses an
unweighted adjacency matrix along with 5 matrices: Common Neighbor (CN), Adamic-Adar (AA), Jaccard’s
Coefficient (JC), Preferential Attachment (PA), and Research Allocation Index (RA). A DBLP dataset covering the
years from 2003 until 2013 was collected and transformed into time-sliced graph representations. The appropriate
matrices were computed from these graphs, mapped to the feature space, and then used to build baseline VAR models
with lag of 2 and some corresponding SVM classifiers. Using the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) as the main fitness metric, the average result of 82.04% for the VAR was improved to 84.78%
with SVM. Additional experiments to handle the highly imbalanced dataset by oversampling with SMOTE and
undersampling with K-means clusters, however, did not improve the average AUC-ROC of the baseline SVM.
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1 Introduction

One of the major problems in network analysis involves
predicting the existence or emergence of links given a
network. The link prediction task has many practical
applications in various domains. In biology, link
prediction has been used for identifying protein-protein
interaction [1] and for investigating brain network
connections [2]. In social media, link prediction has been
used for identifying both future friends and possible
enemies by analyzing positive and negative links [3].
Efforts have also been made to apply link prediction
techniques in communication surveillance to identify
terrorist networks by monitoring emails [4].

Most of the previous works on link prediction use a
static network to predict hidden or future links. In the
detection of hidden links, the network is based on a
known partial snapshot, and the objective is to predict
currently existing links [4]. In the prediction of future
links, the network is based on a snapshot at time ¢, and
the objective is to predict links at time ¢’ (¢’ > £) [5]. In
this framework, insight regarding the dynamics of the
network is disregarded, and information on the
occurrence and frequency of links across time is lost.
Hence, recent works on link prediction use a dynamic
network where the network is characterized by a series of
snapshots that represent the network across time [4, 5].

Some of the recent works on link prediction have also
explored different ways to semantically enrich the
network representation. A study was done by [6] that
uses a heterogeneous network where nodes represent
more than one type of entity. In the prediction of co-
authorship networks, a node may represent an author, a
topic, a venue or a paper. In another study done by [7],
the network was formed by combining multiple layers of
network formed by different types of nodes. In this case,
the network model is composed of the following layers:
the first layer is a co-authorship network; the second
layer is a co-venue network, while the third layer is a co-
citing network. The final homogeneous network is an
aggregation of the three networks where nodes represent
authors.

In this study, we focus on link prediction for a
dynamic and homogeneous network. Since Vector Auto
Regression (VAR) has been shown to be one of the best
techniques for time-series link prediction [8], we
incorporate some ideas from this technique and explore
ways of improving the prediction. In particular, because
the VAR model assumes a linear dependence of the
temporal links on multiple time-series, we propose the
use of Support Vector Machine (SVM) in order to more
robustly handle a non-linear type of dependency even
while retaining the assumption that the dependency is on
multiple time-series. This paper describes our
experimentation on this proposed idea.
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2 Related Literature

In this section, we briefly review the literature on VAR
model and its application in link prediction, the SVM
model and its problems on imbalanced datasets, and some
of the techniques applied for handling such imbalanced
datasets.

2.1 Vector Auto Regression for Link Prediction

The VAR econometric model is an extension of the
univariate autoregressive model that is applied to
multivariate data. It provides better forecast than
univariate time-series models and is one of the most
successful models for analyzing multivariate time-series
[9]. In a recent work on dynamic link prediction, the
VAR technique was applied in homogeneous networks
represented by both unweighted and weighted adjacency
matrices. For each of the unweighted and weighted
adjacency matrices, five additional matrices were created
according to different similarity metrics. These metrics
are the Number of Common Neighbor (CN), Adamic-
Adar Coefficient (AA), Jaccard’s Coefficient (JC),
Preferential Attachment (PA), and Resource Allocation
Index (RA). Using a dataset created from DBLP, the
performance of VAR was compared to static link
prediction and to several dynamic link prediction
techniques, which are Moving Average (MA), Random
Walk (RW), and Autoregressive Integrated Moving
Average (ARIMA). The VAR technique showed the best
performance among the many link prediction techniques.
For a more detailed discussion, refer to [8].

2.2 SVM and Imbalanced Datasets

Support Vector Machine (SVM) is a well-known learning
model that is used mainly for classification and
regression analysis. It computes for a maximum-margin
hyperplane that separates the two classes of instances
from a given dataset. The SVM does not necessarily
assume that the dataset is linearly separable in the
original feature space, and thus often uses the technique
of projecting, via kernel trick, to higher-dimensional
space where the instances are presumed to be more easily
separable.

The SVM has been shown to be very successful in
many applications including image retrieval, handwriting
recognition, and text classification. However, the
performance of SVM drops significantly when faced with
a highly imbalanced dataset. A highly imbalanced dataset
is characterized by instances from one class far
outnumbering the instances from another class. This
makes it difficult to classify instances correctly due to a
small number of the sample size for one class [10]. This
type of dataset is observed in our co-authorship network
since there are significantly many potential co-authorship
links and only few of these are realized.

2.3 SMOTE and SVM with Different Error Costs

In a work done by [10], three techniques were used to
address the problem of highly skewed datasets. The first
technique is to not undersample the majority instances,
since doing otherwise leads to information loss. In the
case of imbalanced datasets, the learned boundary of
SVM tends to be too close to the positive instances.
Hence, the second technique is to apply Different Error
Costs (DEC) to different classes to force SVM to push
the boundary away from the positive instances. The third
technique is to apply Synthetic Minority Over-Sampling
Technique (SMOTE) to make positive instances more
densely distributed. Hence, making the boundary better
defined. Ten (10) datasets where used to test the
techniques. The performance of SVM with the original
dataset was compared to the performance of the
following techniques: SVM with undersampling, SVM
with SMOTE, SVM with DEC, and SVM with a
combination of SMOTE and DEC. In 7 out of 10 datasets,
the best performance was achieved with a combination of
SMOTE and DEC [10].

2.4 K-Means Clustering for Under-Sampling

K-means clustering is one of the simplest unsupervised
learning algorithms and has been used by researchers to
solve well-known clustering problems. In a work done by
[11], K-means clustering was used as an undersampling
technique for a highly imbalanced dataset. The training
set was divided into two: the 1* set contains the minority
instances, while the 2™ set contains the majority instances.
The majority instances were partitioned into K clusters,
for some K > 1. Each majority cluster was combined with
the minority set to form a candidate training set, and the
quality of the candidate training set was evaluated by
using the Fuzzy Unordered Rule Induction Algorithm
(FURIA). The best candidate training set was used for
classification ~with C4.5 decision tree. This
undersampling technique was applied to cardiovascular
datasets from Hull and Dundee clinical sites. The
proposed K-means undersampling method outperformed
the use of the original dataset and the use of another K-
means undersampling technique that was proposed by
[12].

3 Methodology

3.1. Dataset

DBLP computer science bibliography contains
bibliographic information on major computer science
journals and proceedings. The co-authorship network in
DBLP was used for the link prediction task. Following
the dataset preparation in [8], we selected only the
articles from 2003 to 2013, removing all items labelled as
inproceedings, proceedings, book, incollection, phdthesis,
masterthesis, and www. The reduced set was further
trimmed by removing all authors who have 50 articles or
less. The final dataset has 1,743 authors and 21,920
articles. The number of co-authorship links in this dataset
is less than 1% of the total number of possible links.
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To build the time-series models, the dataset was
partitioned based on the year of publication. Each of the
resulting 11 subsets, corresponding to years 2003 (=0)
up to 2013 (~=10), was processed to generate a snapshot
of the dynamic co-authorship network graph. A snapshot
is represented by an u x n unweighted adjacency matrix,
where n = 1,743 (the number of authors), and an entry is
1 if the corresponding two authors have co-authored an
article published on the given year, otherwise the matrix
element is 0. Based from the unweighted adjacency
matrix for each snapshot, five matrices were computed
corresponding to the similarity metrics that are
commonly used for link prediction:

* Number of Common Neighbor (CN)
CN(x,y):‘F(x)mF(y)‘ (1)
* Adamic-Adar Coefficient (AA)

y oL )
zel(x)nI(y) 10g<‘r(2)‘)

* Jaccard’s Coefficient (JC)

AA(x,y)=

JC(x,y)= m A3)

* Preferential Attachment (PA)
PA(xy)=[F () *[T () @

* Resource Allocation Index (RA)

1
RA(xy)= X ©
( ) zel‘(x)ml'(y)‘r(z)‘

where I'(x) is the set of nodes adjacent to node (author) x.

3.2 Baseline VAR and SVM Models

We used the VAR technique with lag of 2, as proposed
by [8], to form the baseline model. The predicted
adjacency matrix at time ¢, denoted by ?,A’ is computed

using the formula:

A _ A4 yA CNy CN AA vy AA JCyJC
Yr - Cl—l + at—IYr—l +OC,_1 Yr—l +at—1 Yt—l +ar—1Yt—1 (6)
PA vy PA RAyRA A4 yA CN vy CN
+o Y T Y 1T ar—ZY Pl O Y -2
Ad vy AA JCyJC PA 7 PA RA 7 RA
+o, Yxfn +o, Yxfn +o, YHz +o, Yzfz

where each y’ is an 5 x n matrix representing the actual
J

values for the similarity metric i at time j, and the nxn
matrix C; and scalar coefficients ¢/ are time-based VAR
J

model parameters. We applied linear regression, using
the /m() function in R, to find the best fitting parameter
set for each snapshot.

The VAR model described here assumes that the co-
authorship link at time ¢ is linearly dependent on 12
factors: the 6 metrics (including the adjacency relation)

from 2 previous time periods, ¢-1 and #-2. However, a
visualization of the dataset for the snapshot /=2, as shown
in Figure 1, indicates that this may not necessarily be the
case. In this figure, there is no clean linear model that fits
the data. However, it should be noted that the two
principal components accounted for just 58.3% of the
variance in the dataset. We explore SVM to verify if it
can improve the time-series prediction.

PC2 (20.5% explained var.)

PC1 (37.8% explained var.)

Figure 1. Data visualization of the instances from =2, for the
VAR and SVM models. Principal Component Analysis was
used to project the 13-dimensional points to the 2-coordinate
space by using the first two principal components of the
instances.

For the SVM model, each instance representing the
presence or absence of a co-authorship link is mapped to
the 12-dimensional feature space, following the linear
dependency assumed in the lag 2 VAR model of this
study. These instances were further projected to higher
dimension using an SVM linear kernel function. An SVM
classifier is then used to predict the class for each
instance, and these predictions are collected to construct
the predicted adjacency matrix, ft“ , of the network at

time ¢.

3.3 Benchmarking

To compare the predictive powers of the VAR and SVM
models, we applied backtesting. That is, we first built a
VAR (or SVM) model for time ¢ using the metric values
for time #-1 and #-2, then used this model to predict the
values at time #+1 using values from time ¢ and #-1, and
finally compared the prediction against the known values
at time #+1. We were able to measure the performance of
the VAR technique in 8 years, from Year 3 to Year 10.

The Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) was used to measure
the performance of the predictive models. In the Receiver
Operating Characteristic (ROC) Curve, the x-axis
corresponds to the False Positive Rate (FPR) and the y-
axis corresponds to the True Positive Rate (TPR), which
are respectively computed as follows:

_ FalsePositive @)
FalsePositive + TrueNegative

FPR
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TPR = TruePositive (8)

TruePositive+ TrueNegative

The AUC of a perfect model is 1, while a random
model will have an expected AUC of 0.5. In our context,
positives correspond to links while negatives correspond
to no links.

3.4 Further Experimentation on SVM

3.4.1 SMOTE and Different Error Cost

We were unable to apply the first approach proposed by
[10] of not undersampling, due to the large sample size of
our negative instances. For our first attempt to improve
our baseline SVM, we applied the Different Error Costs
(DEC) technique that was suggested by [10], which is
setting the cost ratio to the inverse of the imbalance ratio.
For our training set, we created an imbalanced ratio of
1:2 and set the error cost to 1 for positive links and 2 for
negative links.

For our second attempt to improve our baseline SVM,
we applied SMOTE, which was also suggested by [10].
To create the training sets, we oversampled the positive
instances by 100% and undersampled our negative
instances by selecting negative instances until we have
equal number of positive and negative instances. Hence,
we doubled the number of both positive and negative
instances from our baseline SVM experiment.

For our third attempt to improve our baseline
experiment, we combined the use of DEC and SMOTE.
We used SMOTE to create an imbalance ratio of 1:2 and
set the appropriate error costs. We performed the three
experiments, then computed the AUC-ROC and
compared this to our baseline SVM result.

3.4.2 K-Means Clustering

For our last attempt to improve our baseline SVM, we
used K-means clustering, as proposed by [11], to under-
sample the majority instances. First, we separated the
positive instances from the negative instances. Then we
clustered the negative instances into K = 2 clusters and
selected the largest cluster. To form the training set, we
performed random sampling in the larger cluster until we
have an equal number of positive and negative instances.
We combined the sampled majority instances to the

positive instances and used this dataset to train an SVM
classifier. We evaluated the AUC-ROC and compared
this to our baseline SVM result.

4 Results and Discussion

In this section, we present the result of our experiments in
two parts: the result of comparing the performance of
VAR technique and SVM classification algorithm and the
result of our attempts to further improve our baseline
SVM. The complete AUC-ROC results for all the
experiments are shown in Table 1.

4.1. Baseline VAR and SVM models

SVM was able to outperform VAR with average AUC-
ROC values of 84.78% and 82.04% respectively. A two-
tailed paired #-test was conducted in order to determine if
there is significant difference in the means, with at least
90% confidence level. The resulting p-value of 0.064
suggests that there is a statistically significant difference.

In 6 out of 8 years, SVM was able to achieve a better
performance than VAR. Figure 2 shows a plot of the
ROC of VAR and SVM for Year 10, the snapshot where
the SVM was able to outperform VAR by the largest
margin.

There were two snapshots where VAR was able to
outperform SVM but these were only by small margins of
0.24 (in Year 3) and 0.18 (in Year 7). Figure 3 shows the
ROC for Year 3.

The results suggest that the VAR model can be
significantly improved by SVM classification algorithm
when the VAR model multivariate time-series input data
is used as the training set for linear SVM in the domain of
time-series link prediction.

1
0.8

0.6

TPR

0.4
—— VAR

02 ——SVM

o
0 0.5 1
FPR
Figure 2. ROC of VAR and SVM in Year 10.

Table 1. AUC-ROC of Link Prediction Experiments.

Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Average
VAR 86.73 85.51 85.21 81.54 84.82 81.15 76.46 74.90 82.04
SVM 86.49 86.02 85.71 85.25 84.64 83.21 82.33 84.60 84.78
DEC 81.31 84.08 73.27 85.24 84.85 83.24 82.38 84.31 82.34
SMOTE 86.56 86.00 85.73 85.13 84.60 83.20 82.35 84.46 84.75
DEC w/ SMOTE 70.94 86.08 81.68 74.49 81.75 83.21 82.39 80.34 80.11
K-Means 86.37 85.74 85.49 85.14 84.66 82.98 82.29 84.02 84.59
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Figure 3. ROC of VAR and SVM in Year 3.

4.2. Experiments to Improve Baseline SVM

In our subsequent experiments, we were unable to
improve the average AUC-ROC of our baseline SVM
despite implementing multiple techniques for handling
the highly imbalanced dataset. In Table 1, we highlight
the AUC-ROC for each year where the highest AUC-
ROC was achieved. However, we were able to improve
the performance of our baseline SVM in 6 out of 8 years.
Each of the three techniques, SVM with DEC, SMOTE,
and DEC with SMOTE, were able to improve the results
in two years each. DEC was able to improve SVM by
0.21% and 0.03% in Years 7 and 8, while SMOTE was
able to improve SVM by 0.07% and 0.02% in Years 3
and 5. Finally, DEC with SMOTE was able to improve
SVM by 0.06% both in Years 4 and 9.

From our results, we hypothesize that the reason DEC,
SMOTE, and DEC with SMOTE failed to improve the
average performance of our baseline SVM is that the
techniques were designed to perform well on not
undersampled data as proposed by [10]. Although the
techniques were able to improve our baseline SVM in a
few individual years, the improvements were not
consistent enough to beat the average performance of the
baseline SVM.

SVM with undersampling by K-means clustering also
failed to improve our baseline SVM. We infer that there
is inherent information loss in random sampling from the
larger majority instances cluster that leads to the poor
performance of SVM with undersampling by K-means.
However, in the case of datasets with noisy majority
instances, undersampling by K-means clustering might
improve classification as shown by [11].

5 Conclusion and Further Studies

In this study, we performed dynamic link prediction
using various algorithms. Primarily, we were able to
improve the performance of the VAR model by
transforming its input multivariate time-series data as a
feature set vector that was used as a training set to linear
SVM. The VAR model was able to achieve an average
AUC-ROC of 82.04% while SVM was able to achieve an
AUC-ROC of 84.78%. This implies that the performance

of the VAR model can be improved by using SVM
classification algorithm for dynamic link prediction.

In our attempt to further improve the performance of
the baseline SVM, we experimented on several
techniques such as SVM with different error costs (DEC),
SMOTE, and undersampling by K-means clustering. In
the case of un-noisy, large, and highly imbalanced
datasets, we were forced to under-sample the majority
instances, which might explain the poor performance of
SVM with DEC, SMOTE, the combination of both
techniques, and K-means clustering.

Based on these findings, we aim to improve other
existing link prediction techniques by using other
classification algorithms. We also intend to enrich our
network model by using a weighted network and by using
sematic information, which might result to better link
prediction as shown in some previous works. Finally, we
recommend further studies to improve oversampling and
under-sampling techniques for binary classification
specifically for link prediction, where dataset is often un-
noisy, large, and highly imbalanced.
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