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Abstract

Let k be a positive integer. A graph G = (V (G), E(G)) is said to
be k-magic if there is a function (or edge labeling) ` : E(G)→ Zk \ {0},
where Z1 = Z, such that the induced function (or vertex labeling)
`+ : V (G) → Zk, defined by `+(v) =

∑
uv∈E(G) `(uv), is a constant

map, where the sum is taken in Zk. We say that G is c-sum k-magic if
`+(v) = c for all v ∈ V (G). The set of all c ∈ Zk such that G is c-sum
k-magic is called the sum spectrum of G with respect to k. In the case
when the sum spectrum of G is Zk, we say that G is completely k-magic.
In this paper, we determine all completely 1-magic regular graphs. After
observing that any 2-magic graph is not completely 2-magic, we show
that some regular graphs are completely k-magic for k ≥ 3, and deter-
mine the sum spectra of some regular graphs that are not completely
k-magic.

Mathematics Subject Classification: 05C78, 05C70

Keywords: k-magic graphs, completely k-magic graphs, Hamiltonian de-
composition, h-factorable

1 Introduction

Let G be a finite simple graph with vertex set V (G) 6= ∅ and edge set E(G),
and A a non-trivial Abelian group written additively. We say that G is
A-magic if there is a function (or edge labeling) ` : E(G) → A \ {0} such
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that the induced function (or vertex labeling) `+ : V (G) → A, defined by
`+(v) =

∑
uv∈E(G) `(uv), where the sum is performed in A, is constant; that

is, there exists a c ∈ A for which `+(v) = c for all v ∈ V (G). In such case,
the element c of A is called a magic sum of G. A graph is fully magic if it is
A-magic for any Abelian group A, and is non-magic if it is not A-magic for
any Abelian group A.

The concept of A-magic graph was introduced by Sedlacek [12]. He defined
A-magic graphs as a graph with real-valued edge labeling such that distinct
edges have distinct nonnegative labels, and the sum of the labels of the edges
incident to any vertex is constant. For the literature and development on the
concept of A-magic graphs, readers are referred to [1], [10], [11], and [12].

Let Z be the Abelian group of integers, and Zk = {0, 1, 2, . . . , k − 1} be
the Abelian group of integers modulo k ≥ 2. If G is a Zk-magic graph, then
we say that G is k-magic. For convenience, we let Z1 = Z, and Z-magic graph
will be considered as 1-magic. In particular, if G is k-magic with magic sum
c, then we say that G is c-sum k-magic. If c = 0, then we say that G is a
zero-sum k-magic graph. The null set of G, denoted by N(G), is the set of all
positive integers k such that G is a zero-sum k-magic graph.

Theorem 1.1. [11, Theorem 4.2] Let n ≥ 3 be an integer. Then

N(Cn) =

{
N if n is even
2N if n is odd,

where N = {1, 2, 3, . . .} and 2N = {2, 4, 6, . . .}.

A graph is said to be r-regular, or simply regular, if the degree of each
vertex is r.

Theorem 1.2. [1, Theorem 13] Let G be an r-regular graph, where r > 3 and
r 6= 5. If r is even, then N(G) = N; otherwise, N \ {2, 4} ⊆ N(G).

A subset M of E(G) is called a matching in G if no two edges in M are
adjacent in G; that is, no two edges in M share a common vertex. A matching
M saturates a vertex v, and v is said to be M-saturated, if some edge of M
is incident with v. A matching M is said to be perfect if every vertex of G is
M -saturated.

A Hamiltonian cycle of G is a cycle that contains every vertex of G. A
graph is said to be Hamiltonian if it has a Hamiltonian cycle.

Let G be an r-regular graph with edge set E(G). Then G is said to have
Hamiltonian decomposition if either (1) r = 2d and E(G) can be partitioned
into d Hamiltonian cycles, or (2) r = 2d+ 1 and E(G) can be partitioned into
d Hamiltonian cycles and a perfect matching.
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Theorem 1.3. The following graphs admit Hamiltonian decomposition:

(1) complete graph Kn, n ≥ 2 (see [8, p. 162, p. 176]);

(2) complete bipartite graph Kn,n, n ≥ 1 (see [8, p. 162, p. 176]);

(3) n-cube Qn, n ≥ 1 (see [3, Proposition 1]); and

(4) generalized Petersen graph Pm,n, n ≥ 4, 1 ≤ m < bn/2c.
A graph H is a subgraph of G if ∅ ( V (H) ⊆ V (G) and E(H) ⊆ E(G). A

factor of G is a subgraph H with V (H) = V (G). In particular, if a factor H of
G is h-regular, then we say that H is an h-factor of G. An h-factorization of
G is a partition of the edges of G into disjoint h-factors. If such factorization
of G exists, then we say that G is h-factorable.

The following theorem is generally due to Petersen, and has been strength-
ened by many authors.

Theorem 1.4. ([2, Theorem 3.1], [9], [13, Theorem 10]) For every integer
r ≥ 1, every 2r-regular graph is 2-factorable. In particular, for every integer k,
1 ≤ k ≤ r, every 2r-regular graph has a 2k-factor. Moreover, every connected
2r-regular graph of even order is r-factorable.

A graph G is λ-edge connected if it remains connected whenever fewer than
λ edges are removed.

Theorem 1.5. ([7], [2, Theorem 3.4]) Let r, k, and λ be integers such that
1 ≤ k < r and λ ≥ 1, and G be a λ-edge-connected r-regular graph (that may
have loops and parallel edges). If r is even, k is odd, |V (G)| is even, and
r
λ
≤ k ≤ r(1− 1

λ
), then G has a k-factor.

Finally, we now present the main definition of the paper.

Definition 1.6. Let G be a k-magic graph for some positive integer k. The
set of all c ∈ Zk such that G is c-sum k-magic is called the sum spectrum of
G with respect to k, and is denoted by Σk(G). Moreover, in the special case
when Σk(G) = Zk, we say that G is completely k-magic.

For k = 1, the characterization of completely 1-magic regular graphs was
studied in [13]. Using the term “index set” in their paper, the authors deter-
mined the sum spectra of almost all regular graphs.

Theorem 1.7. [13, Theorem 13 (corrected)] Let G be an r-regular graph of
order n. Then

Σ1(G) =



Z \ {0} if r = 1

Z if r = 2 and G contains even cycles only

2Z \ {0} if r = 2 and G contains an odd cycle

2Z if r ≥ 3, r even, and n odd

Z if r ≥ 3, r 6= 4k, k ≥ 1, and n even,
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where 2Z is the set of all even integers.

In this present paper, we first solve the remaining case of the sum spectrum
of 1-magic regular graphs left out in [13], and determine all completely 1-magic
regular graphs. After observing that any 2-magic graph is not completely 2-
magic, we show that some regular graphs are completely k-magic for k ≥ 3 by
considering regular graphs that are hamiltonian, that has hamiltonian decom-
position, or that has perfect matching. We also determine the sum spectra of
some regular graphs that are not completely k-magic.

For convenience, we assume that all graphs to be considered are connected,
and we write Z∗k to mean Zk \ {0}. For graph-theoretic terms that are not
explicitly defined in this paper, refer to [4].

2 Completely 1-Magic Regular Graphs

As mentioned earlier, the authors in [13] left out a case in determining the
sum spectra of 1-magic regular graphs. The following theorem solves this
undetermined case.

Theorem 2.1. Suppose t ≥ 1 is an integer, and G is a 4t-regular graph of
even order. Then Σ1(G) = Z.

Proof. We consider two cases.
Case 1. Suppose t = 1. It is not difficult to see that, being 4-regular,

G is 2-edge connected. Since 0 ∈ Σ1(G) as guaranteed by Theorem 1.2, it is
enough to show that Z∗ ⊂ Σ1(G).

Let E(G) = {e1, e2, e3, . . . , em}. We construct a graph G′ (with parallel
edges) such that V (G′) = V (G) and E(G′) = E(G)∪{e′1, e′2, e′3, . . . , e′m}, where
e′i is a duplicate edge of ei in G for each i (that is, edges ei and e′i have the same
end vertices). Then G′ is a 4-edge-connected 8-regular graph. By Theorem
1.5, G′ has a 5-factor, say H. Let G′ \ H be the 3-factor of G′ obtained by
removing the edges of H from G′.

For each c ∈ Z∗, define fc : E(G′)→ Z∗ by

fc(e) =

{
−c if e ∈ E(H)

2c if e ∈ E(G′ \H).

Observe that the sum of the labels of the edges incident to each vertex of G′

is equal to 5(−c) + 3(2c) = c. This shows that fc is a c-sum 1-magic labeling
of G′ for every c ∈ Z∗.

For each c ∈ Z∗, define `c : E(G)→ Z∗ by `c(ei) = fc(ei) + fc(e
′
i) for each

i, 1 ≤ i ≤ m. Clearly, `c is a c-sum 1-magic labeling of G for each c ∈ Z∗.
Thus, we have Z∗ ⊂ Σ1(G).
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Case 2. Suppose t ≥ 2. By Theorem 1.4, G has a 2y-factor for each
1 ≤ y ≤ 2t. In particular, G has a 6-factor, say H. By Theorem 1.7, we have
Σ1(H) = Z.

Let G \H be the (4t− 6)-factor of G obtained by removing the edges of H
from G.

For each c ∈ Z, let fc be a c-sum 1-magic labeling ofH. Define `c : E(G)→ Z∗
by

`c(e) =

{
fc−(4t−6)(e) if e ∈ E(H)

1 if e ∈ E(G \H).

Observe that the sum of the labels of the edges incident to each vertex of G is
c− (4r− 6) + (4r− 6) = c. Thus, `c is a c-sum k-magic labeling of G for each
c ∈ Z, and so Σ1(G) = Z.

The preceding theorem, together with Theorem 1.7, gives the following
characterization of completely 1-magic regular graphs.

Corollary 2.2. Let r be a positive integer, and G an r-regular graph. Then
G is completely 1-magic if and only if one of the following properties holds:

(1) r = 2 and G contains even cycles only, or

(2) r ≥ 3 and n even.

3 Completely k-Magic Regular Graphs, k ≥ 2

We first present two special observations.

Observation 3.1. Any 2-magic graph is not completely 2-magic. To see this,
for a graph to be 2-magic, the degrees of the vertices must have the same
parity. Since the only possible label of an edge is 1, any 2-magic graph is either
zero-sum 2-magic (when the degree of each vertex is even) or 1-sum 2-magic
(when the degree of each vertex is odd). Thus, we have either Σ2(G) = {0} or
Σ2(G) = {1}.

Observation 3.2. It is not difficult to observe that any regular graph is fully
magic. In particular, any regular graph is k-magic for any positive integer k.
However, fully magicness does not imply completely k-magicness. The path P2

is a 1-regular graph, so it is k-magic for all k. However, P2 is not completely
k-magic since it is not zero-sum k-magic for all k. The sum spectrum of P2 is
clearly Z∗k for any k.

Due to Observation 3.1, it suffices to investigate regular graphs that are
completely k-magic for k ≥ 3.
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If a connected graph is 2-regular, then it must be a cycle. Clearly, the cycle
Cn is not completely 2-magic for any integer n ≥ 3, and Σ2(Cn) = {0}. Our
first result characterizes the complete k-magicness of cycles Cn for n ≥ 3 and
k ≥ 3.

Theorem 3.3. Let n ≥ 3 and k ≥ 3 be integers.

(1) If n is even, then Cn is completely k-magic for all k.

(2) If n is odd, then Cn is not completely k-magic for any k. Moreover, we
have

Σk(Cn) =

{
Zk \ {0} if k is odd,

{0, 2, . . . , k − 2} if k is even.

Proof. (1) By Theorem 1.1, Cn is zero-sum k-magic graph for any k ≥ 3.

To get a magic sum of 1, label the edges of Cn alternately with 2 and k−1,
and, to get a magic sum of c ∈ Zk \ {0, 1}, label the edges of Cn alternately
with 1 and c− 1.

(2) By Theorem 1.1, Cn is zero-sum k-magic graph for any even k ≥ 4.

Suppose k is odd. Let c ∈ Z∗k. If c is even, we label all the edges of Cn with
1
2
c. If c is odd, we label all the edges of Cn with 1

2
(k + c). Note that, in either

case, the sum of the labels of the edges incident to each vertex is c (mod k),
which implies that Σk(Cn) = Z∗k.

Suppose k is even. To obtain an even magic sum of c ≥ 2, we simply label all
the edges of Cn with 1

2
c. On the other hand, to get an odd magic sum, the edges

of Cn must be alternately labeled with odd and even elements of Z∗k, which
cannot be done because n is odd. It follows that Σk(Cn) = {0, 2, . . . , k−2}.

Before continuing further, we present a lemma that specifies which k-magic
graphs for even k are not completely k-magic.

Lemma 3.4. Let k ≥ 4 be an even integer. Then there exists no k-magic
graph of odd order that is completely k-magic. In particular, if c is a magic
sum of a k-magic graph of odd order, then c must be even.

Proof. Suppose, on the contrary, that there is a k-magic graph G of odd order
that is completely k-magic. Let c ∈ Zk be odd, and let ` a c-sum k-magic
labeling of G. We let V (G) = {u1, u2, . . . , um}. Then the computation for the
induced labeling `+ is as follows:

`+(ui) =
∑

u∈NG(ui)

`(uui) ≡ c (mod k)



Completely k-magic regular graphs 5145

for all 1 ≤ i ≤ m, where NG(u) = {v ∈ V (G)|v is adjacent to u}. Adding all
these congruences gives

m∑
i=1

∑
v∈NG(ui)

`(uiv) ≡ mc (mod k).

In the last congruence, since the left-hand-side double-sum expression is even,
while mc is odd, we get a contradiction. Thus, a k-magic graph of odd order
cannot have an odd magic sum.

The following lemma is an exercise in [6].

Lemma 3.5. Let k be a positive integer.

(1) Let a ∈ Zk. Then 〈a〉 = Zk if and only if gcd(a, k) = 1.

(2) If gcd(a, k) = d 6= 1, then 〈a〉 ⊂ Zk. In particular, we have |〈a〉| = k
d
.

(3) Let a, b ∈ Zk. Then

(i) the equation x+a = b has a unique solution in Zk, and the solution
is given by x ≡ b− a (mod k);

(ii) the equation 2x+ a = b has a unique solution in Zk if k is odd; and

(iii) the equation 2x+ a = b does not have a solution in Zk if k is even,
and a and b have different parity.

Let k ≥ 3 and graph G be r-regular, where r ≥ 3. Labeling each edge of G
with 1 produces a magic sum r (mod k). In general, by labeling the edges of
G with the same element d produces a magic sum rd (mod k). This implies
that {c ∈ Zk|c ≡ rd (mod k), d ∈ Zk} ⊆ Σk(G). Using this labeling technique
and by Lemma 3.5, we obtain the following theorem.

Theorem 3.6. Let k, r ≥ 3 be integers, and G an r-regular graph.

(1) If gcd(r, k) = 1, then Σk(G) = {1, 2, . . . , k − 1} if and only if G is not
zero-sum k-magic; otherwise, G is completely k-magic.

(2) If gcd(r, k) = d 6= 1, then

{c ∈ Zk|c = 0 or c ≡ bd (mod k), b ∈ Zk} ⊆ Σk(G).

Theorem 3.7. Let G be a zero-sum k-magic r-regular graph, where k ≥ 3 and
r ≥ 3. If G has a perfect matching, then G is completely k-magic.
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Proof. Let M be a perfect matching in G. Since G is zero-sum k-magic, it is
enough to show that G is c-sum k-magic for all c ∈ Z∗k. We consider two cases:

Case 1. Suppose r ≡ 1 (mod k). Then gcd(r, k) = 1. By Theorem 3.6,
{1, 2, . . . , k − 1} ⊆ Σk(G). Thus, G is completely k-magic.

Case 2. Suppose r 6≡ 1 (mod k). We consider two sub-cases.
Sub-Case 2.1. Let c ∈ Z∗k with c ≡ r − 1 (mod k). Label each edge in

M with k− (r− 1), and the edges not in M with 2. Since r− 1 is non-zero in
Zk, k − (r − 1) (mod k) is also non-zero. Then the sum of the labels at each
vertex is 2(r − 1) + k − (r − 1) ≡ r − 1 ≡ c (mod k).

Sub-Case 2.2. Let c ∈ Z∗k with c 6≡ r − 1 (mod k). Label each edge in
M with c− (r− 1) (mod k), and all edges not in M with 1. Then the sum of
the labels at each vertex is clearly r − 1 + c− (r − 1) ≡ c (mod k).

In any case, we see that G is completely k-magic.

Theorem 3.8. Let G be a zero-sum k-magic r-regular Hamiltonian graph,
where k ≥ 3 and r ≥ 3.

(1) If the order of G is even, then G is completely k-magic.

(2) If the order of G is odd, then

(i) G is completely k-magic if k is odd, and

(ii) Σk(G) = {0, 2, 4, . . . , k − 2} if k is even.

Proof. We show that G is c-sum k-magic for all c ∈ Z∗k.
(1) Since every cycle of even order has a perfect matching, G has a perfect

matching. By Theorem 3.7, G is completely k-magic.
(2) Since the order of G is odd, r must be even. Let H be a Hamiltonian

cycle in G.
(i) Suppose k ≥ 3 is odd. We consider two cases.
Case 1. Suppose r ≡ 2 (mod k). Let c ∈ Z∗k. Label each edge of H with

x, where x = 1
2
c if c is even or x = 1

2
(k + c) if c is odd, and label the edges in

G \H with 1. Then the sum of the labels at each vertex of G is 2x+ r− 2 ≡ c
(mod k).

Case 2. Suppose r 6≡ 2 (mod k). We consider two sub-cases.
Sub-Case 2.1. Let c ∈ Z∗k − {x ∈ Zk|x ≡ r − 2 (mod k)}. Label each

edge of H with x, where x = 1
2
(c− r + 2) if c is even or x = 1

2
(k + c− r + 2)

if c is odd, and label each edge of G \H with 1. This labeling gives a magic
sum 2x+ r − 2 ≡ c (mod k).

Sub-Case 2.2. Let c ∈ Z∗k with c ≡ r − 2 (mod k). Label the edges of H
with c, and label the edges of G \ H with k − 1. At each vertex, the sum of
the labels of the edges incident to it is 2c+ (k − 1)(r − 2) ≡ c (mod k).

Thus, for any c ∈ Zk, G is c-sum k-magic for all odd k, which implies that
G is completely k-magic for odd k.
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(ii) Suppose k ≥ 4 is even. By Lemma 3.4, it follows that

Σk(G) ⊆ {0, 2, 4, . . . , k − 2}.

Now, let c ∈ {2, 4, 6, . . . , k−2}. Applying the same labeling technique used
in (i) above shows that c ∈ Σk(G). Because G is zero-sum k-magic, it follows
that {0, 2, 4, . . . , k − 2} ⊆ Σk(G).

Thus, if k ≥ 4 is even, then Σk(G) = {0, 2, 4, . . . , k − 2}.

Corollary 3.9. Let k ≥ 3 and r ≥ 3. If G is r-regular and has a Hamiltonian
decomposition, then the conclusion of Theorem 3.8 holds.

Proof. From the hypothesis of Theorem 3.8, we only need to establish that G
is a zero-sum k-magic graph. By Theorem 1.2, we are only left to consider the
cases when r = 5, and when r is odd and k = 4. We prove the more general
case when r ≥ 3 is odd.

By definition, we can write G as an edge-disjoint union of a perfect match-
ing (say, M) and 1

2
(r−1) Hamiltonian cycles (say, H as one of them). As guar-

anteed in Theorem 1.2, there exists a zero-sum k-magic labeling of G\(H∪M).
Together with this labeling, we label the edges of H with 1 and the edges of
M with k − 2, and we get a zero-sum k-magic labeling of G.

We end this paper with several examples of completely k-magic graphs,
whose proofs follow immediately from Corollary 3.9, together with Theorem
1.3.

Corollary 3.10. Let n ≥ 4 and k ≥ 3. Then

(1) the complete graph Kn is completely k-magic if n is even, or n is odd
and k is odd; and

(2) Σk(Kn) = {0, 2, 4, . . . , k − 2} if n is odd and k is even.

Corollary 3.11. For n ≥ 3 and k ≥ 3, the regular complete bipartite graph
Kn,n is completely k-magic.

Corollary 3.12. For n ≥ 2 and k ≥ 3, the n-cube Qn is completely k-magic.

Corollary 3.13. For n ≥ 4, 1 ≤ m < bn/2c, and k ≥ 3, the generalized
Petersen graph Pm,n is completely k-magic.

Acknowledgment. The authors would like to thank the anonymous referee
for his/her suggestions that helped improve the paper.
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