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Abstract

Park, Ryu, and Lee recently introduced a Henstock-type integral,
which lies between the Mcshane and the Henstock integrals. This paper
proves the closure property of this new integral under Cauchy extension,
and presents a characterization on absolute Mα-integrability.
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1 Introduction

Park, Ryu, and Lee [4] recently defined a Henstock-type integral, which they
call Mα-integral. Several properties and convergence theorems of the integral
were established in [1] and [4]. Most of them paralleled the usual properties
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of Henstock integral, including the Saks-Henstock Lemma [4, Lemma 2.5].
Moreover, by providing examples, it was also shown in [4] that Mα-integral
lies strictly between the McShane integral (which is known to be equivalent to
the Lebesgue integral (see [2])) and the Henstock integral.

Let α > 0 be a constant, and I = [a, b] a non-degenerate closed and
bounded interval in R.

(1) A partial division D of I is a finite collection of interval-point pairs
([u, v], ξ) such that the closed intervals [u, v] are non-overlapping,

⋃
[u, v] ⊆

I, and ξ ∈ I. If
⋃

[u, v] = I, we call the division D simply a division.

(2) A positive function defined on I is called a gauge on I.

(3) Let δ be a gauge on I, and D = {([u, v], ξ)} a partial division of I. If
[u, v] ⊆ (ξ − δ(ξ), ξ + δ(ξ)) for all ([u, v], ξ) ∈ D, then we say that D is
a δ-fine McShane partial division. Moreover, if D is a McShane partial
division such that ξ ∈ [u, v] for all ([u, v], ξ) ∈ D, then D is called a
δ-fine Henstock partial division.

(4) A McShane division D = {([u, v], ξ)} of I is said to be an Mα-division if∑
([u,v],ξ)∈D

dist(ξ, [u, v]) < α,

where dist(x, J) = inf{|y − x| : y ∈ J}.

(5) Let D = {([u, v], ξ)} be a partial division on I, and f a real-valued
function defined on I. We write

S(f,D) =
∑

([u,v],ξ)∈D

f(ξ)(v − u).

With these terms and notations, the definition of Mα-integrability can now
be presented.

Definition 1.1 ([4, Definition 2.1]). A function f : [a, b]→ R is Mα-integrable
if there exists a real number A such that, for each ε > 0, there is a gauge δ on
[a, b] such that

|S(f,D)− A| < ε

for each δ-fine Mα-division D of [a, b]. Here, A is called the Mα-integral of f

on [a, b], and we write A =
∫ b
a
f .

Moreover, f is Mα-integrable on E ⊆ [a, b] if fχE is Mα-integrable on [a, b],

where χE is the characteristic function over E, and we write
∫ b
a
fχE =

∫
E
f .

This paper proves the closure property of this new integral under Cauchy
extension (Theorem 2.1) and a characterization on absolute Mα-integrability
(Theorem 3.3).
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2 Cauchy Extension

The following theorem shows that Mα-integral is closed under Cauchy exten-
sion, a property that is not valid for McShane integral.

Theorem 2.1 (Cauchy Extension). Let f : [a, b]→ R be Mα-integrable on [c, b]

for each c ∈ (a, b). Then f is Mα-integrable on [a, b] if and only if limc→a+
∫ b
c
f

exists. In this case, we have ∫ b

a

f = lim
c→a+

∫ b

c

f.

Proof. Suppose that f is Mα-integrable on [a, b], and let ε > 0 be given. Then
there exists a gauge δ on [a, b] such that if D is a δ-fine Mα-division of [a, b],
then ∣∣∣∣S(f,D)−

∫ b

a

f

∣∣∣∣ < ε.

Moreover, for each c ∈ (a, b), there exists a gauge δc on [c, b] such that if Dc is
a δc-fine Mα-division of [c, b], then∣∣∣∣S(f,Dc)−

∫ b

c

f

∣∣∣∣ < ε.

For each c ∈ (a, b), we may assume that δc(x) ≤ δ(x) for all x ∈ [c, b].
Choose s ∈ (a, a + δ(a)) such that |f(a)|(s − a) < ε. Let Ds be a δs-fine

Mα-division of [s, b]. Then D = Ds ∪ {([a, s], a)} is a δ-fine Mα-division of
[a, b]. Hence, we have∣∣∣∣∫ b

a

f −
∫ b

s

f

∣∣∣∣ ≤ ∣∣∣∣∫ b

a

f − S(f,D)

∣∣∣∣+

∣∣∣∣S(f,Ds)−
∫ b

s

f

∣∣∣∣+ |f(a)|(s− a) < 3ε.

Since s is chosen arbitrarily close to a, we obtain limc→a+
∫ b
c
f exists and is

equal to
∫ b
a
f .

Conversely, suppose that limc→a+
∫ b
c
f = A exists, and let {x0, x1, x2, . . .}

be a strictly decreasing sequence of real numbers such that x0 = b and xn → a.
Then f is Mα-integrable on [xn, xn−1] for every n ∈ Z+.

Let ε > 0 be given. For each integer n ≥ 1, choose a gauge δn on [xn, xn−1]
such that if Dn is a δn-fine Mα-division of [xn, xn−1], then∣∣∣∣S(f,Dn)−

∫ xn−1

xn

f

∣∣∣∣ < ε

2n
.

Furthermore, choose an integer N > 0 such that∣∣∣∣∫ b

t

f − A
∣∣∣∣ < ε and |f(a)|(t− a) < ε
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for every t ∈ (a, xN ].

Define a gauge δ on [a, b] as follows:

δ(x) =


xN − x if x = a
min{δ1(x), x− x1} if x ∈ (x1, x0]
min{δn(x), x− xn, xn−1 − x} if x ∈ (xn, xn−1), n ≥ 2
min{δn(x), δn+1(x), xn−1 − x, x− xn+1} if x = xn, n ≥ 1.

Let D be a δ-fine Mα-division of [a, b]. Then

D = {([a, t], a)} ∪Dt ∪
m⋃
i=1

Di,

where t ∈ (xm+1, xm] for some integer m ≥ N , Dt a δm+1-fine Mα-division
of [t, xm] ⊂ (xm+1, xm], and Di a δi-fine Mα-division of [xi, xi−1]. Thus, by
Saks-Henstock Lemma, we have

|S(f,D)− A| ≤ |f(a)|(t− a) +

∣∣∣∣S(f,Dt)−
∫ xm

t

f

∣∣∣∣
+

m∑
i=1

∣∣∣∣S(f,Di)−
∫ xi−1

xi

f

∣∣∣∣+

∣∣∣∣∫ b

t

f − A
∣∣∣∣

< ε+
ε

2m+1
+
∞∑
i=1

ε

2i
+ ε

< 4ε.

This ends the proof of the theorem.

Corollary 2.2. Let f : [a, b] → R be Mα-integrable on every [c, d] ⊂ (a, b).

Then f is Mα-integrable on [a, b] if and only if limc→a+
d→b−

∫ d
c
f exists. In this

case, we have ∫ b

a

f = lim
c→a+
d→b−

∫ d

c

f.

3 Absolute Mα-Integrability

Recall that an integral theory is absolute if a function f is integrable (in the
sense of that theory) if and only if |f | is also integrable. Both Riemann and
McShane integrals are absolute (see [2] or [5]), but Henstock integral is known
to be not (see [3]).
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Example 3.1. Let
∑∞

n=1 an be a convergent series. Define a function f :
[0, 1]→ R as follows:

f(x) =

{
2nan if x ∈

(
1
2n
, 1
2n−1

]
, n ∈ Z+

0 if x = 0.

Clearly, f is Mα-integrable on [c, 1] for each c ∈ (0, 1). Thus, by Theorem 2.1,
we have ∫ 1

0

f = lim
c→0+

∫ 1

c

f =
∞∑
n=1

an.

However, it is not difficult to see that |f | would be Mα-integrable if and only if
the given series is absolutely convergent.

In general, due to the closure under Cauchy extension, it is possible for a
function f to be Mα-integrable on [a, b], but |f | is not. We have the following
proposition.

Proposition 3.2. The Mα-integral is not absolute.

Let a function f : [a, b]→ R be Mα-integrable on [a, b]. Then the function
F : [a, b] → R, defined as F (a) = 0 and F (x) =

∫ x
a
f for x ∈ (a, b], is called

the primitive of f on [a, b].
Recall that a function F : [a, b]→ R is said to be of bounded variation on

[a, b] if

V (F, [a, b]) = sup

{∑
P

|F (u, v)|

}
<∞,

where the supremum runs over all partitions P of [a, b] (that is, a finite
collection of non-overlapping intervals [u, v] such that

⋃
[u, v] = [a, b]), and

F (u, v) = F (v)− F (u).
The following theorem answers the question on exactly when |f | is Mα-

integrable on [a, b], given that f is Mα-integrable on [a, b].

Theorem 3.3. Let a function f : [a, b] → R be Mα-integrable on [a, b] with
primitive F . Then |f | is Mα-integrable on [a, b] if and only if F is of bounded
variation over [a, b]. In this case, we have∫ b

a

|f | = V (F, [a, b]).

Proof. Suppose that |f | is Mα-integrable on [a, b]. Let P = {[u, v]} be a
partition of [a, b]. Then∑

P

|F (u, v)| =
∑
P

∣∣∣∣∫ v

u

f

∣∣∣∣ ≤∑
P

∫ v

u

|f | =
∫ b

a

|f |,
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which implies V (F, [a, b]) <∞. Thus, F is of bounded variation over [a, b].
Conversely, suppose that F is of bounded variation over [a, b]. Let ε > 0 be

given. Then there exists a partition P = {[xi−1, xi] : i = 1, 2, . . . , n} of [a, b]
such that

V (F, [a, b])− ε

2
<

n∑
i=1

|F (xi−1, xi)| ≤ V (F, [a, b]).

Moreover, by the Mα-integrability of f , there exists a gauge δ0 on [a, b] such
that

|S(f,D)− F (a, b)| < ε

4

for any δ0-fine Mα-division D of [a, b].
Define

δ(x) =


min{δ0(x), x− xi−1, xi − x} if x ∈ (xi−1, xi) for some i
min{δ0(x), x− xi−1, xi+1 − x} if x = xi, 1 ≤ i ≤ n− 1
min{δ0(x), x1 − x} if x = x0 = a
min{δ0(x), x− xn−1} if x = xn = b,

and let D = {([uk, vk], ξk) : k = 1, 2, . . . ,m} be a δ-fine Mα-division of [a, b].
By the definition of δ, D has x0 = a, x1, x2, . . . , xn = b as among its tags.
Further, if ([u, v], ξ) ∈ D, where ξ ∈ {x0, x1, . . . , xn}, then ξ ∈ [u, v], so that
these tags can be made as endpoints and

V (F, [a, b])− ε

2
<

n∑
i=1

|F (xi−1, xi)| ≤
m∑
k=1

|F (uk, vk)| ≤ V (F, [a, b]).

Thus, applying Saks-Henstock Lemma and triangle inequality, we have

∣∣S(|f |, D)− V (F, [a, b])
∣∣ ≤ ∣∣∣∣∣

m∑
k=1

(|f(ξk)|(vk − uk)− |F (uk, vk)|)

∣∣∣∣∣
+

∣∣∣∣∣
m∑
k=1

|F (uk, vk)| − V (F, [a, b])

∣∣∣∣∣
<

m∑
k=1

|f(ξ)(vk − uk)− F (uk, vk)|+
ε

2

< ε.

This ends the proof of the theorem.

Corollary 3.4. Let the functions f, g : [a, b] → R be Mα-integrable on [a, b]
with |f(x)| ≤ g(x) for all x ∈ [a, b]. Then |f | is Mα-integrable on [a, b], and∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f | ≤
∫ b

a

g.



Cauchy extension of Mα-integral and absolute Mα-integrability 1329

References

[1] I. J. L. Garces and A. P. Racca, Characterizing Convergence Conditions
for the Mα-Integral, J. Chungcheong Math. Soc. 24 (3) (2011) 469-480.

[2] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Per-
ron, and Henstock, American Mathematical Society, 1994.
http://dx.doi.org/10.1090/gsm/004

[3] P. Y. Lee, Lanzhou Lectures on Henstock Integration, World Scientific,
1989. http://dx.doi.org/10.1142/0845

[4] J. M. Park, H. W. Ryu and H. K. Lee, The Mα-Integral, J. Chungcheong
Math. Soc. 23 (1) (2010) 99-108.

[5] H. L. Royden and P. M. Fitzpatrick, Real Analysis, Pearson, 2010.

Received: March 19, 2015; Published: April 30, 2015


	Cauchy Extension of Mα-Integral and Absolute Mα-Integrability
	Custom Citation

	tmp.1583475615.pdf.LCc9z

