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On The Maximum Leaf Number of a Family of
Circulant Graphs

Felix P. Muga II

Abstract—This paper determines the maximum leaf number
and the connected domination number of some undirected and
connected circulant networks which are optimal among all the
maximum leaf numbers and connected domination numbers of
circulant networks of the same order n and the same degree 2k.
We shall tackle this problem by working on the largest possible
number of vertices between two consecutive jump sizes.

Index Terms—leaf number, connected domination number.

I. INTRODUCTION

Let G be a simple connected graph. The spanning tree of
G is its subgraph that contains all its vertices and has no
cycles. A maximum leaf spanning tree (MLST) of G has the
most possible number of leaf vertices among all the spanning
trees of G.

The number of leaf vertices of a MLST of G denoted by
`(G) is the maximum leaf number of G.

The problem of finding a maximum leaf spanning tree of
G is the MLST problem.

A connected dominating set of G is a subset D of the
vertex set of G that induces a connected subgraph of G such
that every vertex in G is either in D or adjacent to a vertex
in D. The minimum connected dominating set (MCDT) has
the smallest possible number of vertices among all connected
dominating sets of G.

The number of elements of a MCDT denoted by d(G) is
the minimum connected domination number of G.

R. J. Douglas [3] showed that d(G)+ `(G) is the order of
G.

Hence, the problem of finding the MCDT of G is equiv-
alent to the MLST problem.

II. LEAF NUMBER OF A FAMILY OF CIRCULANT
NETWORKS

Let N and k be integers such that N � 3 and k � 1.
Consider a connected and undirected circulant network

G = C
�

n;±(s1, s2, . . . , sk)
�

of order N and degree 2k such
that N � 2k + 1.

The vertices si and N�si, for all i = 1, 2, . . . , k are called
the jump sizes of G. The jump sizes under consideration are
ordered such that 1 = s1 < s2 < . . . < sk <

N

2

.
Let the vertices of G be labelled as 0, 1, . . . , N � 1.
Suppose S is the ordered list that contains all the jump

sizes of G. Then we can also write G as C(N ;S).
We shall find d(Gi) and `(Gi) for i = 1, 2 where
1) G1 = C

�

N ;±(iq + 1)

�

, 8i = 0, 1, . . . , k � 1, q � 1,
and N = (2k � 1)q + 2.

F. P. Muga II is with the Department of Mathematics, School of Sci-
ence and Engineering, Ateneo de Manila University, Philippines e-mail:
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2) G2 = C
�

n;±(s1, s2)
�

where N = (2k � 1)q + r + 2,
s1 = iq + 1, and s2 = (k � r1 + j)q + j + 2, 8i =
0, 1, . . . , k � r1 � 1, 8j = 0, 1, . . . , r1 � 1, q � 1, and
r = 1, 2, . . . , 2k � 2 with r1 =

jr

2

k

.
Note that if r = 1, then r1 = 0 and the jump of sizes of G2

are similar to those of G1.
We shall show that

M
�

n, 2k
�

=

(

d(G1) if r = 0

d(G2) if r > 0

L(n, 2k) =
(

`(G1) if r = 0

`(G2) if r > 0

where

M
�

n, 2k
� def
= min

n

d(G)

�

�8G = C(N ;S),
�

�S
�

�

= 2k
o

L(n, 2k) def
= max

n

`(G)

�

�8G = C(N ;S),
�

�S
�

�

= 2k
o

over all connected and undirected circulant networks G of
order n = (2k � 1)q + r + 2 and degree 2k where q � 1,
k � 1, and r = 0, 1, . . . , 2k � 2.

In the rest of the paper we shall always assume that G is
a circulant network of order n and degree 2k such that its
jump sizes are in the ordered list S of length 2k whose first
term is 1.

Theorem 1:

⇠

N � 2

2k � 1

⇡

 M(N, 2k)  n� 1

1  L(N, 2k) 
�

(2k � 2)N + 2

2k � 1

⌫

Proof: Consider a spanning tree T of G rooted at u.
Let A(v) = [v, p[v], L[v]] be the adjacency list of vertex

v where p[v] is the parent vertex of v and L[v] is the list of
child vertices of v in T .

Since u is the root of T , it follows that A(u) =

[u, none, L[u]] where L[u] ✓ S.
The adjacency lists of the other internal vertices are

[v, p[v], L[v]], where |L[v]| > 0, and those of the leaf
vertices are A(z) =

⇥

z, p[z], L[z]
⇤

, where L[z] is empty.
The number of internal vertices of T is the maximum if

each internal vertex has one child vertex only.
Thus, d(G)  n� 1 and 1  `(G). Hence,

M(N, 2k)  d(G)  N � 1

1  `(G)  L(N, 2k)

Since G is 2k-regular and since the root u has no parent
vertex, it follows that

�

�L[u]]
�

�  2k, and since each of the
other internal vertices of T has a parent vertex, we have
�

�L[v]
�

�  2k � 1 for all the other internal vertices v of T .
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Hence, the number of internal vertices of T can be
minimized if the list of child vertices are filled up to its
maximum capacity.

The total number of child vertices is N � 1 since the root
has no parent vertex.

If a vertex which is adjacent to the root is first chosen to
be its child vertex, then we have N � 2 child vertices to be
distributed to all the L[v]’s of the internal vertices, each of
which can accomodate up to 2k � 1 child vertices.

Hence,
⇠

n� 2

2k � 1

⇡

 d(G). This inequality is true for all

connected and undirected circulant networks of order n and
degree 2k.

Thus,
⇠

n� 2

2k � 1

⇡

M(n, 2k). Consequently, the number

of leaf vertices of each of the spanning trees of G is as large
as

n�
⇠

n� 2

2k � 1

⇡

= n+

�

� n� 2

2k � 1

⌫

=

�

(2k � 2)n+ 2

2k � 1

⌫

.

Hence, `(G) 
�

(2k � 2)n+ 2

2k � 1

⌫

. This inequality is true

also for all connected and undirected circulant networks of
order n and degree 2k.

Thus, L(n, 2k) 
�

(2k � 2)n+ 2

2k � 1

⌫

.

Therefore,
⇠

n� 2

2k � 1

⇡

M(n, 2k)  n� 1

1  L(n, 2k) 
�

(2k � 2)n+ 2

2k � 1

⌫

.

Let G = C(N ;S) be a connected and undirected circulant
network of order n and degree 2k and let �(G) be the largest
number of vertices between two consecutive jump sizes in
G.

Theorem 2: Suppose that N = (2k � 1)q + r + 2 where
k, q 2 Z+, and r = 0, 1, . . . , 2k � 2. Then

1) �(G) = q � 1, if r = 0 and S = {±(iq + 1)}, 8i =
0, 1, . . . , k � 1, or .

2) �(G) = q, if r > 0 and S =

�

± s1,i, ±s2,j
 

where
s1,i = ±(iq + 1), s2,j = ±((k � r1 + j)q + j + 2),
8i = 0, 1, . . . , k � r1 � 1, 8j = 0, 1, . . . , r1 � 1, with
r1 =

jr

2

k

.

Note that the elements of S are computed as residues under
modulo N ,

Proof:

1) If r = 0, then N = (2k � 1)q + 2 and if si = iq + 1,
for i = 0, 1, . . . , k � 2, then

si+1 � si � 1 = q � 1,
�

N � si
�

�
�

N � si+1

�

� 1 = q � 1,
�

N � sk�1

�

� sk�1 � 1 = q � 1

Thus, �(C(N ;±(iq + 1))) = q � 1.
2) For i = 0, 1, . . . , k�r1�1, and for j = 0, 1, . . . , r1�1,

with r1 =

jr

2

k

, let s1,i = iq+1 and s2,j = (k� r1 +

j)q + j + 2.

We find the number of vertices between two consecu-
tive jump sizes of G = C

�

n;±(s1,i, s2,j)
�

s1,i+1 � s1,i � 1 = q � 1,
�

N � s1,i
�

�
�

N � s1,i+1

�

� 1 = q � 1

s2,j+1 � s2,j � 1 = q
�

N � s2,j
�

�
�

N � s2,j+1

�

� 1 = q

s2,0 � s1,k�r1�1 � 1 = q
�

N � s1,k�r1�1

�

�
�

N � s2,0
�

� 1 = q

and in the two consecutive jump sizes at the center of
S, we have

�

N�s2,r1�1

�

�s2,r1�1�1 = q+r�2r1�1.
If r is odd, then 2r1 = r�1. If r is even, then 2r1 = r.
Thus,

�

N�s2,r1�1

�

�s2,r1�1�1 =

(

q if r is odd, or
q � 1 if r is even

Hence, �
�

G
�

= q.

III. AN ALGORITHM TO CONSTRUCT S , p AND L OF A
SPANNING TREE OF G1 OR G2

Let A = hA(0), A(1), . . . , A(n� 1)i be a sequence of
adjacency lists of a tree T rooted at 0 such that the adjacency
list of the root 0 is

⇥

0, None, S
⇤

and for v 6= 0, we have
A(v) =

⇥

v, p[v], L[v]
⇤

where p[v] is the parent vertex of v
in T and L[v] is the list of child vertices of v in T .

Suppose that the respective data structure of p and L are
dictionaries where

1) p =

�

0 : None, 1 : p1, , n � 1 : pn�1

 

such that
p[0] = None, and p[v] = pv , the parent vertex of v,
for each v = 1, 2, . . . , N � 1.

2) L =

�

0 : S, 1 : L1, . . . , , N � 1 : LN�1

 

such that
L[0] = S, and L[v] = Lv , the list of child vertices of
v, for each v = 1, 2, . . . , N � 1.

ALGORITHM 1 Find S, p and L in G1 or G2.

Require: N, k 2 Z, n � 3 and k � 1

Ensure: S, p, and L
1: if n� 2 ⇤ k � 1 < 0 then
2: return None
3: end if
4: S  [ ], p { }, and L { }
5: for i = 0 to n� 1 do
6: p[i] None and L[i] [ ]

7: end for
8: Find (q, r) = divmod(N � 2, 2 ⇤ k� 1) {where q is the

quotient and r is the remainder when N � 2 is divided
by 2k � 1.}

9: if r = 0 or r = 1 then
10: for i = 0 to k � 1 do
11: u = i ⇤ q + 1

12: S  S +

⇥

u,N � u
⇤

{Jump sizes in G1}
13: end for
14: else {r � 2}
15: compute r1 =

jr

2

k

16: for i = 0 to k � r1 � 1 do
17: u1 = i ⇤ q + 1
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18: S  S +

⇥

u1, N � u1

⇤

{jump sizes in G2}
19: end for
20: for j = 0 to r1 � 1 do
21: u2 = (k � r1 + j) ⇤ q + j + 2

22: S  S+

⇥

u2, N�u2

⇤

{another jump sizes in G2}
23: end for
24: end if
25: Sort S in ascending order.
26: L[0]  S {All the jump sizes are child vertices of the

root}
27: for all v 2 S do
28: p[v] 0 {0 is the parent vertex of all the jump sizes}
29: end for
30: for i = 0 to 2k � 2 do
31: compute d = S[i+ 1]� S[i]� 1

32: if d > 0 then
33: for j = 1 to d do
34: v  S[i] + j {v /2 S}
35: if v  q then
36: p[v] v � 1 and L[v � 1] L[v � 1] +

⇥

v
⇤

37: else {v > q}
38: p[v] j and L[j] L[j] +

⇥

v
⇤

.
39: end if
40: end for
41: end if
42: end for
43: return S, p and L.

Theorem 3: Let N, k 2 Z such that N � 3 and k � 1

and consider S, p and L generated in Algorithm 1.
Suppose that A =

D

⇥

v, p[v], L[v]
⇤

�

�

�

8v 2 V
�

G(n;S)
�

E

is the sequence of adjacency lists of the subgraph T of G.
Then

1) T is a spanning tree of G.
2) The number of internal vertices of T is q if r = 0, or

q + 1 if r � 1, and
3) the number of leaf vertices of T is N � q if r = 0, or

N � q � 1 if r � 1.
Proof: T is a spanning subgraph of G since it has all

the vertices of G where G = G1 or G = G2.
We shall show that T is a subtree of G.
Since 0 has no parent vertex in T , it is the root of T .
Let s and t be two consecutive jump sizes in G such that

q = t� s� 1.
Let v be a nonzero vertex in G. Then v is in one of two

closed intervals: I1 =

⇥

1, q
⇤

, or I2 =

⇥

q + 1, N � 1

⇤

.
1) Suppose v1 2 I1. Since s1 = 1 and s2 = q + 1, it

follows that vertex 1 is the only vertex in I1 that is a
child vertex of the root 0.
Since p[v1] = v1 � 1 for all v1 2 I1, it follows that
every vertex in

⇥

1, q
�

is a parent vertex in T and that
every vertex in I1 is connected to the root by a path
that passes through vertex 1.
Since a child vertex has a single parent vertex only, it
follows that the path between v 2 I1 and 0 is unique
for every vertex in I1.

a) If r = 0, then �
�

G1

�

= q� 1. Thus, vertex q has
no child vertex in T .

b) If r � 1, then �
�

G1

�

= q or �
�

G2

�

= q.
Thus, q has a child vertex in T . Its child vertex
is u where s < u < t and u = s+ q.

Hence, the number of internal vertices of T is q � 1

if r = 0, or it is q, if r � 1.
2) Suppose v2 2 I2.

If v2 2 S, then p[v2] = 0.
If v2 /2 S, then there exist two consecutive jump sizes
s1 and t1 such that s1 < v2 < t1 and v2 = s1 + u for
some u in

⇥

1, t1 � s1 � 1

⇤

.
Thus, p[v2] = u, since u  t1 � s1 � 1  q.
This implies that p[v2] 2 I1.
Hence, the parent vertex for every vertex in I2 is in
I1.
This means that L(v2), which was initialized as the
empty list, is always empty.
Consequently, every vertex in I2 is a leaf vertex.
Since each vertex v1 2 I1 is connected to the root 0 by
a path that is unique to v1 and 0, and since p[v2] 2 I1
for every vertex v2 2 I2, it follows that v2 is connected
to the root 0 by a unique path in T .
Hence, the number of leaf vertices of T is N � q � 1

if r = 0, or it is N � q, if r � 1.

Let m(T ) and l(T ) be the number of internal vertices and
the number of leaf vertices of a tree T .

Theorem 4: Suppose that G is the circulant network G1

or G2 of order N and degree 2k where N � 3 and k � 1.

Then d(G) =

⇠

N � 2

2k � 1

⇡

and `(G) =

�

(2k � 2)N + 2

2k � 1

⌫

.

Therefore, M(N, 2k) = d(G), and L(N, 2k) = `(G).
Proof: By Theorem 3, if T is the spanning tree of G

generated by A where G = G1 or G = G2 is of order
N = (2k�1)q+r+2 and degree 2k with r = 0, 1, . . . , 2k�2,
k � 1 and q � 1, then

m(T ) =

(

q if r = 0, or
q + 1 if r � 1.

,

l(T ) =

(

N � q if r = 0, or
N � q � 1 if r � 1.

Since M(N, 2k) �
⇠

N � 2

2k � 1

⇡

and
⇠

N � 2

2k � 1

⇡

=

⇠

(2k � 1)q + r

2k � 1

⇡

⇠

N � 2

2k � 1

⇡

= q +

⇠

r

2k � 1

⇡

= m(T )

Thus, m(T ) M(N, 2k).
However, by the minimality of M(N, 2k) and d(G), we

have M(N, 2k)  d(G)  m(T ),

Therefore, M(N, 2k) = d(G) =

⇠

N � 2

2k � 1

⇡

.

Also, L(N, 2k) 
�

(2k � 2)N + 2

2k � 1

⌫

and
�

(2k � 2)N + 2

2k � 1

⌫

=

�

(2k � 1)N �N + 2

2k � 1

⌫

=

�

(2k � 1)N � (2k � 1)q � r

2k � 1

⌫

= N � q +

�

�r
2k � 1

⌫

�

(2k � 2)N + 2

2k � 1

⌫

= N � q �
⇠

r

2k � 1

⇡

= l(T )
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Thus, L(N, 2k)  l(T ).
However, by the maximality of L(N, 2k) and `(G), we

have L(N, 2k) � `(G) � l(T ).

Therefore, L(N, 2k) = `(G) =

�

(2k � 2)N + 2

2k � 1

⌫

.

IV. A SPANNING TREE OF G WITH OPTIMAL d(G) AND
`(G) BUT WITH LESSER HEIGHT

The height of a vertex in a tree is the distance of the vertex
from the root.

Hence, the height of the root u in a tree is h(u) = 0.
The height of v which is a child vertex u is h(v) = 1.
The height of a tree T is defined to be

h(T )

def
= max{h(v)

�

�v 2 V (T )}

where V (T ) is the vertex set of T .
Hence, the height of the spanning tree T of G1 or of G2

generated by S, p, L of Algorithm 1 is equal to

h(T ) =

⇠

N � 2

2k � 1

⇡

.

This tree can be shortened by half of its height by
modifying the internal vertices in Algorithm 1.

For each j = 0, 1, . . . , 2k�2, let sj = S[j], tj = S[j+1],

and find dj = tj � sj � 1, cj,1 =

⇠

dj
2

⇡

, and cj,2 =

�

dj
2

⌫

.

Then
1) for i1 = 1, 2, . . . , cj,1,

p[sj + i1] = i1 and append sj + i1 to L[i1],
2) for i2 = 1, 2, . . . , cj,2,

p[tj � i2] = N � i2 and append tj � i2 to L[N � i2].
Note that dj = cj,1 + cj,2.

Hence, we have the following theorem.
Theorem 5: The spanning tree T of G1 or G2 produced

by the modification of the internal vertices of Algorithm 1
as stated above has the following properties:

1) m(T ) =

⇠

n� 2

2k � 1

⇡

,

2) l(T ) =

�

(2k � 2)n+ 2

2k � 1

⌫

, and

3) h(T ) =

⇠

�(G)

2

⇡

 m(T )

2

.

Proof: Let v be a nonzero vertex in T .
If v 2 S, then p[v] = 0. Suppose v /2 S.
Then either
• v = sj + i1 where i1 = 1, 2, . . . , cj,1 or
• v = tj � i2 where i2 = 1, 2, . . . , cj,2.
1) Suppose v = sj + i1 where i1 = 1, 2, . . . , cj,1. Then v

and i1 are adjacent vertices in G and p[v] = i1 in T .
If v = 1 + i1, where s0 = 1 and v 2

�

1, 1 + c0,1
⇤

,
then i1 = v � 1.

Consider the vertex c�,1 =

⇠

�(G)

2

⇡

.

Since dj  �(G), it follows that cj,1  c�,1.
a) Suppose �(G) = q � 1. Then d0 = �(G).

Thus, c0,1 = c�,1.
b) Suppose �(G) = q. Then d0 = �(G) or d0 =

�(G)� 1.
Thus, either c0,1 = c�,1 or c0,1 = c�,1 � 1.

Thus, c�,1 2
⇥

1, 1 + c0,1
⇤

. Consequently, p[c�,1] =

c�,1 � 1.
Hence, p[v] = i1 in T where v = sj + i1 and i1 2
⇥

1, c�,1
⇤

✓
⇥

1, 1 + c0,1
⇤

.
Note that vertex c�,1+1 has no child vertex since it is
larger than c�,1.
Hence, 1, 2, . . . , c�,1 are the nonzero internal vertices
in the closed interval

⇥

1, 1 + c0,1
⇤

of T .
These internal vertices form a path between c�,1 and 0

that passes through 1. This path is unique since a child
vertex has a single parent vertex only.

2) Suppose v = tj � i2 where i2 = 1, 2, . . . , cj,2. Thus, v
and N�i2 are adjacent vertices in G and p[v] = N�i2
in T .
If v = t2k�1 � i2 = N � 1 � i2 where 1  i2 
c2k�2,2, then v + 1 = N � i. Hence, p[v] = v + 1,
v 2 [N � 1� c2k�2,2, N � 1).
Consider the vertex N � c�,2.

Since
�

dj
2

⌫


�

�(G)

2

⌫

, it follows that cj,2  c�,2.

Thus, N � c�,2  N � cj,2.
a) If �(G) = q � 1, then d2k�2 = �(G). Thus,

c2k�2,2 = c�,2. Hence, N � c�,2 = N � c2k�2,2.
b) If �(G) = q, then d2k�2 = �(G)� 1 or d2k�2 =

�(G). Thus, c2k�2,2 = c�,2 or c2k�2,2 = c�,2�1.
Hence, N � c�,2 = N � c2k�2,2 or N � c�,2 =

N � 1� c2k�2,2.
This implies that N � c�,2 2

⇥

N � 1 �
c2k�2,2, N�1

⇤

. Thus, p[N�c�,2] = N�c�,2+1.
Hence, p[v] = N � i2 where v = tj � i2,
i2 = 1, 2, . . . , cj,2 such that N � i2 2

⇥

N � 1�
c2k�2,2, N � 1

⇤

.
Note that vertex N � c�,2� 1 has no child vertex
in T since c�,2 + 1 is larger than c�,2.
Hence, the nonzero internal vertices of T in the
closed interval

⇥

N � 1 � c0,2, N � 1

⇤

are N �
1, N � 2, . . . , N � c�,2.
This forms a path that passes through N � 1

between the root and the internal vertices in this
interval.

Thus, the number of nonzero internal vertices are

c�,1 + c�,2 = �. Hence, m(T ) = � + 1 =

⇠

n� 2

2k � 1

⇡

.

Consequently, l(T ) =

�

(2k � 2)n+ 2

2k � 1

⌫

. The height

of the tree is equal to h(T ) = c�,1 
m(T )

2

.
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