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Color Models as Tools in Teaching Mathematics 
 

Ma. Louise Antonette N. De Las Peñas  
mlp@math.admu.edu.ph 

Department of Mathematics, Ateneo de Manila University 
 Philippines 

 
Abstract: In this paper we discuss various situations how color models and patterns can be used to simplify the study 
of abstract mathematics and serve as tools in understanding mathematical ideas. We illustrate the realization of such 
models through the development of advanced computer technology. In particular, we present how a computer algebra 
software such as Mathematica, or a dynamic geometry environment, can be utilized to facilitate the study of 
transformation geometry and group theory.  
 
 
 
1.  Introduction 
     
In the mathematics classroom, a lecture or presentation can be made more interesting and can 
captivate students’ attention with the use of color models and colored patterns. More importantly, 
these models can be used as tools in teaching and learning algebraic and geometric theories; and 
make possible the visualization of abstract concepts and the development of critical thinking. 

In many universities and colleges, abstract algebra is one of the courses where mathematics 
majors, future mathematics teachers or teachers studying graduate courses in mathematics have 
difficulty, either in dealing with the content or in terms of developing a positive attitude to the 
subject matter. The underlying concepts are difficult to grasp because of the high level of 
abstraction and complexities involved, and students also have to understand and write proofs. 

The purpose of this note is to discuss the use of color models and colored patterns in teaching 
topics in abstract algebra such as group theory. The use of technology in the classroom makes 
accessible these models via dynamic geometry software, computer algebra systems or interactive 
software from the internet. Not only can students work in an exploratory environment wherein they 
can make and test conjectures, but also more importantly, with technology, they are allowed to 
think visually and geometrically. Asking students to validate proofs using specific technology 
based activities may not only help students develop the ability to validate proofs, but also may help 
increase their own proof writing abilities. As the students attempt to familiarize themselves with the 
concepts by manipulating these models and try to develop new ideas, they become less intimidated 
with the abstraction and gain positive outlook to the course. 

 
2.  Colored Cayley tables and other models from Mathematica 

 
Arthur Cayley in 1854 introduced a procedure for defining a finite group G by listing its elements 
in the form of a multiplication table which was later known as a Cayley table representing G. In this 
section, we give some colored Cayley tables and other models, which can serve as tools for the 
study of group and subgroup properties, cosets; concepts on homomorphisms and isomorphisms, 
rings and fields. In our work, we generate the models through the add-on Abstract Algebra package 
called by the computer algebra software Mathematica [11]. 
 
 



A. Group and Subgroup Properties. 
 
We first show models used to study some properties of a group, its subgroup and elements. 
 

As a first example, we focus our attention to the cyclic group Z8 consisting of 8 elements, under 
+8 the operation addition modulo 8. Consider the Cayley table corresponding to Z8 given in Figure 
1. In the table a different color is used for each element of a group. The entries in the table 
corresponding to the elements are colored and labeled accordingly. Just by looking at the colors in 
the table one can verify easily the group properties and characteristics of Z8. Notice that the group 
identity will have to be the element 0, (represented by color yellow), since it is the column under 
this element that will give the same sequence of colors yellow (0), pink(1), orange(2), … , and 
brown(7), indicating that upon application of yellow to every group element, the identity of each 
element has been preserved. The inverse of each group element can also be identified easily. 
Consider for example the element 6, represented by the color green. The inverse is clearly the 
element 2, colored orange since upon application of orange to green, the result is yellow, which 
represents the identity of the group. 

To understand the orders of the elements of Z8, a Cayley table colored in a different way, such as 
the one shown in Figure 2 may be used. The palette found at the bottom of the table indicates the 
color corresponding to a group element raised to the nth power. Properties pertaining to an element 
g ∈ Z8 (listed in column 1), can be verified in the corresponding row of g. For instance, if one 
would want to determine the result of g2, one would simply look at the group element in the row of 
g that is given the color orange, e.g., 5 added twice gives 2, as shown in row 6.  
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Figure 1: Cyclic group Z8    Figure 2: Orders of elements of Z8    Figure 3: Subgroup <6> of Z8 

(Outputs produced using Mathematica [11]) 
 
Now to determine the order of g, one would look at the color assigned to 0 in the corresponding 

row of the table. The order of 4 can be verified to be 2 since 4 added twice gives orange, which is 
the color corresponding to 0 in the fifth row. To find the generators of the group, once can inspect 
those rows with 8 complete colors, indicating that all elements of the group have been generated by 
an element. For the group Z8, these will be the elements 1, 3, 5 and 7. For a non-generator of Z8, say 
2, one can also pick out the elements of the group <2> generated by 2, namely 2,4, 6 and 0 which 
are those that come with colors in the third row. Note that color tables on the orders of the elements 
of a group, such as that presented in Figure 2 can also help illustrate differences between cyclic and 
non-cyclic groups, where students can verify that for a cyclic group, there are elements that 
generate the whole group. 



Properties pertaining to subgroups can also be verified from similar colored Cayley tables of 
subgroups. An example of a Cayley table of the subgroup <6> of Z8 is shown in Figure 3.  

In general, a cyclic group Zn may also be viewed through a clock model, where we think of the 
elements as numbers on an n hour clock where the nth element is viewed as being equivalent to 
zero. Addition of two numbers under +n in Ζn will be treated like adding numbers on the clock.  For 
the cyclic group Z8, we view the last element 8 as being equivalent to zero.  

Properties on subgroups can be derived from the clock model: In Figure 4 we present the clock 
model for the subgroup <6> generated by the element 6. One can visualize the path traced on the 
clock model as the subgroup is generated; that is 6 generates the subgroup {6, 4, 2, 0} of 4 
elements. The inverse of 6, which is 2, also generates the same subgroup, as shown in Figure 5.  
Students can arrive at the generalization that an element x and its inverse, n- x, generates the same 
subgroup, that is, < x > = < n – x >.  Figure 6 shows the model of the group generated by 3, which 
happens to be Z8; the path forms an 8-star. 

Activities can be created where the students explore the generators of Zn - these generators are 
elements ak such that (k,n) = 1.  The clock model clearly describes the fact that the group is cyclic 
since after n applications of the generator under +n,we complete a cycle and start from zero again. 
Moreover, students can also visualize the construction of a star of n sides and points from a 
generator ak of Zn where gcd(n, k) =1 and 1< k < n – 1. The visual representation of the cyclic group 
Ζn given by the construction of the n-point star is an interesting motivational tool that can be used 
in the teaching of such abstract concepts [1,2].   
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Figure 4: Subgroup <6> of Z8   Figure 5: Subgroup <2> of  Z8    Figure 6: Subgroup <6> of Z8 

 (Outputs produced using Mathematica [11]) 
 
 

Models corresponding to elements of the dihedral group Dn, as symmetries of a regular n-gon 
can also be generated by Mathematica.  For instance, the effect of an element of the group D3 as a 
symmetry of the equilateral triangle is visualized from the screen output presented in Figure 7. The 
vertical reflection x ∈ D3 fixes the vertex 3 and interchanges vertices 1 and 2.  From the model, this 
element can also be understood as a permutation element of the symmetric group S3. The element x 
is the two cycle (12) ∈ S3.  Using similar models, it is possible to visualize group elements as 
symmetry elements. For example, we can also exhibit models corresponding to the rotational 
symmetries of the tetrahedron, which constitute the alternating group A4.  
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Figure 7: The effect of the vertical reflection x on the equilateral triangle 
(Output produced using Mathematica [11]) 

 
 
B.  Cosets, Isomorphisms and Homomorphisms 

 
Colored Cayley tables may help explain the construction of the quotient group G/H of left cosets 

of a given normal subgroup H of a group G as well as illustrate the concept of isomorphism 
between two given groups. 
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                     Figure 8: Cosets of H= {0,4} in Z8         Figure 9: Coset 7 + H 

(Outputs produced using Mathematica [11]) 
 
 To view examples of these colored models, let us again look at the cyclic group Z8. Consider a 

particular subgroup H = {0,4} of G. The set of left cosets of H in G are the following, namely, H, 
1+H, 2+H and 3 + H, and these form the group G/H. The structure of this group can be understood 
more clearly through the colored Cayley table shown in Figure 8. Each left coset is given one color 
in the table: yellow, pink, orange and green. Thus one can easily determine the elements of each 
coset, since all elements belonging to one coset are given the same color. Also using the same 
procedure discussed in Section 2.A, one can also verify the identity and the inverse of each element 
of G/H. A detailed computation of how a particular coset is obtained can also be viewed through a 
different table. For example, the computation of how the set 7+H has been calculated can be 
visualized in Figure 9. 

The group G/H is a finite group of 4 elements. To verify the structure of G/H, we can generate 
colored Cayley tables of the two finite groups of order 4, namely, the Klein 4 group and the cyclic 
group Z4, and compare these with the colored Cayley table of G/H. From the tables given in Figure 
10, it can be deduced quickly by observing the color schemes that G/H and Z4 have indeed the same 
group structure, or we can say that G/H is isomorphic to Z4. Note that G/H, and Z4 are also 
isomorphic to the subgroup <6> of Z8. (Compare Figures 10 and 3).  
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         Figure 10: Cayley tables of Z8/{0,4}, Z4, Klein 4     

(Outputs produced using Mathematica [11]) 
         

The last part of this section is devoted to an example of how particular color models help us 
determine homomorphisms from a cyclic group to another cyclic group.  

Given the cyclic group Z4 and Z12, we define the map g from Z4 to Z12 that sends the element 1 in 
Z4 to the element 6 in Z12, visualized in Figure 11. This map g is a homomorphism and we can 
confirm this via the corresponding colored table. The table gives us information whether a given 
map h is a homomorphism in the following manner. The table entry corresponding to the 
computation a*b in the domain of the homomorphism is colored if and only if the pair {a,b} is 
preserved by the homomorphism, that is, h(a*b) = h(a)*h(b). Notice that the table corresponding to 
g has all its entries colored, thus g is a homomorphism. 
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Figure 11: Visualization of homomorphism g from Z4 to Z12 
(Outputs produced using Mathematica [11]) 

 
 

Now, let us define the map f from Z4 to Z12 that takes the element 1 in Z4 to the element 4 in Z12, 
This map can be visualized in Figure 12. Using the colored table that corresponds to f, we can 
verify that this map is not a homomorphism, since not all the entries in the table is colored. For 
example, note that the entry corresponding to 2+3 is not colored, which suggests that f(2+3) ≠ f(2) 
+f(3). We can understand this better by looking at the companion colored flowchart. We have 
f(2+3) = f(1) =4; whereas  f(2) +f(3) = 0+ 8 =8. 
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Figure 12: Visualization of homomorphism f from Z4 to Z12 

(Outputs produced using Mathematica [11]) 
 
 

C. Rings and Fields 
 
In Figures 13 and 14, we present as examples the colored tables for the respective rings Z5 and Z8 
(under addition, multiplication mod 5 and 8).  Students can compare the structures of both rings 
from the tables. The ring Z5 is a field, whereas Z8 is not. A close inspection of the multiplication 
table for Z8 will make evident that elements corresponding to rows without “1” (pink color), which 
is the multiplicative identity, do not have multiplicative inverses. By exploring several tables of 
representative rings, students can answer questions like when is the ring Zn a field? Then students 
attempt to formulate a proof. 
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 Figure 13:  Tables for ring Z5                    Figure 14:  Tables for ring Z8 

(Outputs produced using Mathematica [18]) 
 
3.  Color Models from Interactive Software   
 
There are also color models for teaching and visualizing abstract algebra that can be generated 
through the interactive software Group Explorer [9], which is an open-source software that can be 
easily downloaded from the internet (http://groupexplorer.sourceforge.net/). These models not only 
come in the form of group tables, but also in terms of Cayley diagrams, cycle graphs and objects of 
symmetry. There is a wide variety of finite groups to explore- cyclic and dihedral groups, the 
quaternions, etc. There is room for flexibility in manipulating the models. This feature of the 
software gives the students more opportunities for exploration and investigation. For instance, for 
the group tables, one can change relevant properties such as order of rows and columns, color 
scheme, and one can separate the group elements into cosets. Lattice of subgroups can also be 



generated, showed in terms of tables. Moreover, a symmetry object maybe clicked and dragged, so 
the student can view and rotate it in three-dimensional space.  
 

         
Figure 15: Dihedral group D4   Figure 16: A coset table for D4   Figure 17: Cycle graph for D4 
   (Outputs produced using Group explorer [9]) 
 
As an example, we consider the dihedral group of 8 elements, D4 = <r, f > = {e, r, r2, r3,  f,  rf, 

r2f,  fr}. Figure 15 shows the Cayley table for D4 with each element given a particular color. On the 
other hand, Figure 16 illustrates the partition of D4 into cosets of the subgroup S = {e, f} of D4. An 
example of a cycle graph output, generated by Group explorer is shown in Figure 17 for D4 -  there 
is evidence of a one 4-cycle, and four 2-cycles in the graph. A cycle graph gives an illustration of 
the cycles of a group, that is, the orbits of elements and how the cycles connect. Thus D4 has four 
cyclic subgroups of order 2, and one cyclic subgroup of order 4. Recall that a cyclic group can be 
generated by one element, and the group consists of entirely the orbit of that element.  

A Cayley diagram is a directed graph with a node corresponding to each element of the group, 
and a type of arrow for each group generator, which is color coded by Group explorer. Cayley 
diagrams show the actions of the generators on all the group elements. The diagram may also be 
clicked and dragged so various views are possible. Nodes can be given colors to highlight a 
particular subgroup (see Figure 18). Figures 18 and 19, shows, respectively, screen captures of the 
Cayley diagram and object of symmetry (square) of D4. From the Cayley diagram of D4, students 
can deduce the facts that the group is generated by two elements; and that the group is non-abelian 
by exploring the orders of the arrows. This feature of Group explorer, that of generating Cayley 
diagrams, come very handy in the classroom when presenting links of group theory to graph theory, 
and applying these diagrams to represent real world situations, such as networking problems. 

  

          
 Figure 18: Cayley diagram of D4                Figure 19: Object of symmetry of D4         

(Outputs produced using Group explorer [9]) 



There are pre-constructed activities that may be used in teaching abstract algebra, one source is 
the Wolfram Demonstrations project site [14] which features a collection of animated 
demonstrations involving a wide range of mathematical topics.  One activity involves the use of 
colored models to illustrate the concept of group actions, orbits and stabilizers. For example in 
Figure 16, we present a still image of a sample demonstration. In the given activity, the idea is to 
visualize the resulting action of a group on the set of colors of the squares. For a particular coloring 
displayed on the left window, the images under the action of a group element on the coloring are 
displayed on the right, as are the orbits of colors and stabilizer. The group can be a choice of a 
dihedral group of order 8 or a cyclic group of order 4, acting on either two, three, or four colors.  

By analyzing the resulting colored patterns after varying the groups and the color assignments to 
the squares, the concepts on orbits and group actions are better understood. The use of technology 
in this activity allows a geometric representation of the abstract concepts through the use of colored 
patterns and facilitates the exploration process that leads to a deeper understanding of the concept.  
The fact that technology can generate these images with ease allows the students to observe group 
properties through the colored patterns that result from the group action, and give concrete 
generalizations. By also giving representations to the colors (e.g. a color represents an atom or 
molecule in a given crystal) the students will appreciate the connections of the concepts to real 
world situations.  In future studies this will help the students integrate such mathematical concepts 
with other fields of study. 

 

  
Figure 20: Brodie’s Orbits and Stabilizers of Groups Acting on Colorings  

of 4x4 Checkerboards (Still image from Wolfram Demonstration’s Project [12] ) 
 
4. Dynamic Geometry Activities  
 
In this part of the paper, we highlight some investigations which can be carried out in a dynamic 
geometry environment to understand group theoretic concepts, in particular using colorings of left 
cosets and right cosets of  a given subgroup.  

                                  
Figure 21: pattern P       Figure 22: labeling of P      Figure 23: right coset    Figure 24: left coset     

                                                                                   coloring                          coloring  
               (Construction produced using Geogebra [8])                    



We assume we have a pattern on the plane whose symmetry group is either a dihedral group, a 
cyclic group, a frieze group or a plane crystallographic group. For example the uncolored pattern P 
in Figure 21 has as symmetry group G the dihedral group of eight elements generated by a 
counterclockwise 90° rotation A about the center of the square and a mirror reflection B in the 
horizontal line through the center of the square. By labeling one of the triangles as I, corresponding 
to the identity element of G, we may label each of the eight triangles by the elements of G which 
sends the triangle I to the specified triangle. This sets up a one-to-one correspondence between the 
set of eight triangles and the set G, as shown in Figure 22.  A colored pattern is arrived at by 
assigning a color to each element of G, and thus to each of the eight triangles.  For example, the 
colored pattern P* in Figure 23 is a coloring using right cosets H = {I,B}(pink hatch), HA = {A, 
A3B} (green hatch), HA2 = {A2 , A2B}(blue) and HA3 = {A3, AB} (white).  

Some questions that may be asked are: what is the symmetry group of the colored pattern? If a 
mirror reflection AB is performed where will each of the colors go? Which symmetries effect a 
permutation of the colors? What is the normalizer of H in G? 
 

                                          
            Figure 25: Applying AB           Figure 26:Applying A2B       Figure 27: Applying B     
                                         (Images produced using Geogebra [8])  
 

Working within a dynamic geometry environment, investigations may be carried out to answer 
these questions. For example, applying the reflection AB to P*, we get an inconsistent overlap of 
colors, as shown in the screen capture given in Figure 25.  Pink portions overlap with green as well 
as white.  On the other hand, when applying the reflection A2B, we obtain a consistent overlap of 
colors, suggesting that A2B effect a permutation of the colors; as shown in Figure 26. It can be 
verified that the subgroup of elements of G that effect a permutation of the colors is {I, A2B, B, A2}. 
For a coloring using right cosets of S in G, the subgroup of elements which permute the colors is 
the normalizer of S in G, NG(S). Thus, from the activity, it can be concluded that NG(H) =  {I, A2B, 
B, A2}. The elements of NG(H)  that fix the colors is the symmetry group of the colored pattern. For 
example applying the reflection B sends the colored pattern P* to itself (Figure 27). Thus the 
symmetry group of the colored pattern is {I,B}. 

Now for the subgroup H = {I, B}, the four left cosets are H, AH, A2H and A3H. A coloring of P 
using these left cosets is shown in Figure 24. It can be checked by application of each symmetry g 
∈ G to the colored pattern, that each element of G effects a permutation of the colors. A question 
that may be asked is what elements of G fix each color? For example, the identity I and the 
reflection B fix the blue colors given by the coset A2H. Note that the stabilizer of a color gH, or the 
subgroup fixing color gH is the conjugate of H by g, gHg-1. Thus A2HA2 = {I,B}.  Visually, this 
gives a way of determining conjugate subgroups using colors, or through color symmetry.  



5. Conclusion 
 

Here we have presented an approach in teaching abstract algebra, with the aid of color models and 
patterns. The approach addresses studying the concepts in a more visual and geometric way. Moreover, the 
approach is facilitated and made easier with the use of either the computer algebra software Mathematica, 
dynamic geometry technology and interactive software; or a combination of these technological tools. 

Rather than following a definition-theorem-proof-example format fare usual in teaching abstract 
algebra, our approach in teaching the course was to first engaged the students in activities with 
concrete examples; working with two or three partners.  In the previous sections we have presented 
some of the models and the activities that we have used in our classes. These were either done in 
class or as homework to be carried out outside class hours. Then drawing from the students’ 
observations and conjectures, we formulate the definition or attempt to prove the generalization. 
The reflective discussions that followed the activities were valuable; these allowed the students to 
help concretize ideas which were later formalized into the definitions, theorems and were tools 
when they tried to write proofs.  

An additional helpful supplement to teaching abstract algebra is the interactive site created by 
Joseph Gallian [15]. The site is a supplement to [6], but can work hand-in-hand with other 
textbooks. The technology exercises are designed to help formulate and test conjectures.  

There is still a lot to be learned in terms of strategies of teaching abstract algebra with color 
models through technology tools, and a direction to be pursued for future work would be to study 
the usefulness of these approaches on student learning. 
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