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Chemical profiling and standardization of the defatted methanol extract of the leaves of Vitex negundo 
L. were carried out using 13C nuclear magnetic resonance (NMR) analysis followed by chemometric 
analysis of the chemical shift data. Chemical profile was obtained using a k-means cluster profile and 
chemical standardization which was achieved using a multivariate control chart. The V. negundo 
samples were made up of four groups: the training set, submitted samples from production farms, 
commercial samples, such as tablets, capsules and teas, and experimental samples (samples which 
were allowed to degrade). Four groups were generated in k-means cluster, which generally 
corresponded to the four types of samples. The multivariate control chart identified samples whose 
quality exceeded the upper control limit, all of which were commercial samples and experimental 
samples. The samples were also analyzed by quantitative thin layer chromatography (qTLC) using 
agnuside as marker compound. Comparison of the qTLC results with the k-means cluster and the 
multivariate control chart showed poor correspondence. This means that a univariate analysis of a 
plant sample using a marker compound is useful only for quantification of the target compound. On the 
other hand, chemical profiling and standardization of medicinal plants should use a multivariate 
method. 
 
Key words: Vitex negundo, 13C NMR, multi-variate cluster profile, multi-variate control chart. 

 
 
INTRODUCTION 
 
With the growing interest in medicinal plants today, 
numerous plants which are traditional home remedies are 
being developed for commercial production. This entails 
expansion of the supply chain from sourcing of validated 
planting material to farming and processing of the raw 
plant material, to manufacture of finished product. 
Because many herbal products are sold as dried plant 
material, such  as  tablets  and  teas, there  is  a  need  to 

develop effective methods of standardization and quality 
assurance. Medicinal plants are very complex mixtures of 
secondary metabolites which can vary significantly 
depending on the planting material, environment and 
farming conditions, age at harvest, storage, and 
processing.  

Quality assurance of herbal products should meet the 
following  needs:  verification of plant identity; detection of  
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adulteration or chemical deterioration; and quantification 
of active components, if known (Kumari and Kotecha, 
2016). Quality assurance can be based on the targeted 
analysis of one or few compounds (univariate) or on the 
chemical profile of the plant extract (multivariate) (Ning et 
al., 2013). Chemical profiling of herbal products refers to 
the generation of a quantitative molecular description of 
the whole extract of plant secondary metabolites (MW < 
1,000 Da) in order to establish plant identity and product 
quality (Yongyu et al., 2011) using chemical analytical 
methods such as chromatography, spectroscopy, or 
hyphenated chromatography-mass spectrometry. 

Nuclear magnetic resonance (NMR) spectroscopy can 
yield considerable information in an untargeted analysis 
of a plant extract. NMR is robust, highly reproducible, and 
requires minimal sample preparation which minimizes 
experimental artifacts and bias. Because of the desire for 
highest sensitivity, 1H NMR is the most common 
technique used and is combined with chemometric 
methods to profile, fingerprint or discriminate among 
crude herbal samples (Bailey et al., 2002; Zulak et al., 
2008; Lee et al., 2009; Kim et al., 2010; Mahmud et al., 
2014), and for quality control (Wang et al., 2004, 
Rasmussen et al., 2006, van der Kooy et al., 2008). 1H 
NMR measurements of herbal medicines have been 
reported using magnetic fields from 300 to 800 MHz 
(Zulak et al., 2008; Kim et al., 2011). The limitation of 1H 
NMR, however, is that the spectra are magnetic field-
dependent because the chemical shift in Hz is magnetic 
field-dependent while the 1H-1H J couplings are 
magnetic-field independent. This means that 1H NMR 
spectra taken at different magnetic fields will have 

different ratios J and different spectral appearances. 

When the ratio between the difference in frequency () 

and coupling (J) is less than 20, the spectrum is second 
order and the appearance of the spectrum is sensitive to 
the magnetic field strength (Becker, 2000). Thus, data 
from 1H NMR spectra taken at different magnetic fields 
cannot be combined. 

Compared to 1H NMR, 13C NMR is a more general 
chemical profiling technique because the fully 1H-
decoupled 13C NMR signals are singlets and do not have 
second-order effects since 1H-13C coupling is zero. This 
means that 13C NMR data are amenable to spectral 
comparison across different magnetic field strengths. 
Unlike 1H NMR, 13C NMR does not require water 
suppression, which is another source of spectral 
variability since this is influenced by instrument and 
operator performance. 13C NMR however requires much 
longer acquisition times and this is its main disadvantage. 
To date, there are only a few examples of the use of 13C 
NMR for the profiling of biological extracts. 13C NMR was 
used to profile triacylglycerols from the seed oil of 
Moringa oleifera (Vlahov et al., 2002) and lipid extracts 
from Atlantic salmon (Aursand et al., 2009). 13C NMR 
was used to profile fractions from a crude extract of 
Anogeissus leiocarpus  after which hierarchical clustering  

 
 
 
 
analysis   (HCA)   revealed   correlations   between  13C 
signals of the mixture with known compounds using a 
13C NMR database (Hubert et al., 2014). 

Chemometrics is a family of techniques that applies 
statistics to voluminous chemical data, such as 
spectroscopic signals from a collection of samples, with 
the objective of gaining insights into the characteristics of 
the samples through graphical representation or pattern-
recognition (Wold, 1995). Chemometric analysis is an 
ideal tool for the classification of spectroscopic data from 
whole plant extracts to differentiate plants according to 
species, origin, processing treatment, age, and other 
quality parameters (Kim et al., 2010). 

The overall objective of this paper is to explore the use 
of 13C NMR together with multivariate statistical methods 
for the chemical profiling and standardization of medicinal 
plants. This work will also compare the use of 13C NMR 
with 1H NMR. The results from the multi-variate control 
chart will be compared with a targeted univariate 
quantitative thin layer chromatography (qTLC) method 
using a marker compound. 
 
 
MATERIALS AND METHODS 

 
Study species 

 
Vitex negundo, L. is an aromatic shrub which is found from tropical 
East Africa to South Asia, Southeast Asia, and Polynesia and from 
Japan southward to Malesia and is widely used in traditional 
medicine, especially in South and Southeast Asia (GRIN-Global, no 
date). V. negundo is grown all over the Philippines in commercial 
farms which supply the dried leaves to herbal pharmaceutical 
companies. The iridoid agnuside is a major constituent in the dried 
leaves of V. negundo (Dayrit and Lagurin, 1994). A validated 
method has been reported for the analysis of the leaves by qTLC 
using agnuside as a marker compound (Roy et al., 2015). 

 
 
Samples 

 
There was a total of 64 samples, which were made up of four sets: 
training set (n=15), submitted samples (n=17), commercial samples 
(n=13), and experimental set (n=19). The training set was made up 
of V. negundo leaf samples that we collected from 5 locations 
around the Philippines. The training set samples were immediately 
washed and dried at ≤ 60°C to < 5% moisture. The submitted set 
was made up of dried or powdered leaves that were submitted by 5 
commercial farms from various parts of the country. Commercial 
products (n = 13) were tablets, capsules, and tea products that 
were purchased from supermarkets and drug stores. Experimental 
samples (n = 19) comprises a heterogeneous set which include; old 
samples (> 4 years), flowers, plant tops, and samples that 
deliberately allowed to degrade (fresh samples were allowed to 
stand for 3 days before drying). 
 
 

Sample preparation 

 
To determine the reproducibility of the procedure (extraction and 
13C NMR and qTLC analyses), each of the 64 plant samples was 
extracted and analyzed in duplicate. The results of each duplicate 
run were not averaged but were considered as a  separate  sample. 



 
 
 
 
Therefore, the number of NMR and qTLC runs is twice the number 
of samples. 

All samples were milled and sieved (30 to 100 mesh). Five grams 
of plant material were defatted using n-hexane in a Soxhlet 
apparatus for 4 h. Two grams of the hexane defatted material were 
extracted with methanol in a Soxhlet apparatus for 4 h at 90°C. The 
same defatted sample was used for NMR and qTLC. 
 
 
NMR analysis 
 
To prepare the NMR sample 0.1 g of the defatted methanolic plant 
extract was dissolved in 0.7 ml of methanol-D4 (with added TMS, 
Cambridge Lab., USA) in a 5 mm NMR tube. A measured amount 
of DMSO was added as internal standard. 

1H NMR spectra were acquired on a 400 MHz on a JEOL 
Lambda 400 NMR spectrometer (9.4 Tesla) and on a 500 MHz 
Varian (11.75 Tesla). The same spectral parameters were used for 
both instruments: pulse angle: 45°; number of scans: 4; number of 
points: 32k. The following spectral parameters were adjusted 
according to the magnetic field: at 400 MHz: spectral width: 7,993 
Hz; at 500 MHz: spectral width: 10,000 Hz. FIDs were processed 
using exponential multiplication with auto-processing to avoid 
operator bias. Line broadening was set at 2.4 Hz for 400 MHz 
spectra and 3.0 Hz for 500 MHz spectra. 

13C NMR spectra were acquired at the corresponding 
frequencies: 100 MHz (9.4 Tesla) and 125 MHz (11.75 Tesla). The 
same spectral parameters were used for both instruments: pulse 
angle: 45°; broad-band 1H decoupling; number of scans: 2,200; 
number of points: 32k. The following spectral parameters were 
adjusted according to the magnetic field: at 100 MHz: spectral 
width: 27,100 Hz; at 125 MHz: spectral width: 33,875 Hz. FIDs were 
processed using exponential multiplication with auto-processing to 
avoid operator bias. Line broadening was set at 1.20 Hz for 100 
MHz spectra and 1.5 Hz for 125 MHz spectra. 
 
 
Data processing and statistical analysis 
 
For the 100 MHz 13C NMR spectrum, a bin size of 4 Hz was used 
across the spectral range of 27,100 Hz. For 125 MHz spectrum, a 
bin size of 5 Hz was used across the spectral range of 32,768 Hz. 
Sixty of the tallest peaks in each 13C NMR spectrum were selected. 
The duplicate extracts were treated as separate samples. The 
peaks were aligned and normalized using the signal of the DMSO 
internal standard.  

The tallest 60 peaks in each 13C NMR spectrum were selected, 
normalized against the DMSO internal standard and then aligned. 
NMR peaks which were, absent in greater than 90% of the samples 
were removed. This yielded 108 chemical shifts. These were loaded 
as a table in JMP for chemometric analysis. Chemometrics analysis 
was performed using JMP version 11 (SAS).  
 
 
Quantitative thin-layer chromatography (qTLC) 
 
qTLC analysis was performed on silica gel-60 F254 aluminum 
backed plates (Merck 5554), using the solvent system: 
EtOAc:HOAc:H2O (16:2:1). Agnuside was purified from V. negundo 
leaves and used as TLC marker compound. The 1H and 13C NMR 
and melting point agreed with literature (Dayrit and Lagurin, 1994) 
and gave a single spot by TLC. 

Weighed volumes of each sample were spotted on the TLC plate 
in 5 mm bands using an automated TLC applicator (CAMAG 
Linomat 5, Switzerland). Each plate contained 5 calibration bands 
of the marker compound and six extracts spotted in duplicate. The 
plates were recorded using a digital camera under UV-254 nm light 
and processed using QuantiScan v3.0 software (Biosoft, UK). 
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The correlation coefficient, R2, for the marker compound in all TLC 
plates was > 0.99. 

 
 
RESULTS  
 
NMR profiles at different magnetic field strengths 
 
The 1H NMR 400 MHz and 500 MHz spectra and 13C 
100 MHz and 125 MHz spectra of the same V. negundo 
extract are shown in Figures 1 and 2, respectively. The 
1H NMR spectra taken at 400 MHz and 500 MHz show 
significant differences in peak heights and peak patterns 
which are expected from theory. We did not subject the 
1H NMR spectra to further analysis. On the other hand 
the 13C NMR spectra taken at 100 MHz and 125 MHz 
show very similar profiles. 
 
 
Principal components analysis (PCA) cluster plot 
 
PCA is the most common method used to reduce the 
number of dimensions in a large data set by creating 
linear combinations of the data that can be used to 
represent the entire sample using fewer dimensions. PCA 
has been utilized to discriminate among commercial 
feverfew samples (Bailey et al., 2002), for quality control 
and authentication of chamomile (Wang et al., 2004), 
differentiation of Artemisia species (van der Kooy et al., 
2008), and metabolite fingerprinting of ginseng (Lee et 
al., 2009). 

 Initially, we used PCA to generate the sample clusters. 
The result was that PC1 and PC2 could account only for 
about 41% of the variability which meant that this was not 
a sufficiently good model for the 128 samples (Figure 3). 
The data required up to PC9 to reach 80% explained 
variability but there is no simple way to show the resulting 
clusters. 
 
 
K-Means cluster plot 
 
An alternative to PCA is k-means clustering, which can 
be used to classify a given data set starting from an a 
priori number of clusters. K-means cluster analysis was 
used to classify different chemotypes of Chamerion 
angustifolium L., a medicinal plant used in food 
supplements, according to their geographic origin 
(Kaškonienė et al., 2015). The k-means cluster was 
generated directly from the 13C NMR chemical shifts. 
The procedure for k-means involves obtaining the 
differences (yi – ӯ), where yi is the intensity of a chemical 
shift y of run i; ӯ is the average intensity of the chemical 
shift y for all runs, i = 1 to n. In this work, i = 128 runs and 
y = 108 chemical shifts. The magnitude of these 

differences (yi – ӯ), equivalently (    ̅)
  to remove the 

effect of the sign, determines the k-means clustering of 
the samples (Johnson and Wichern, 2007). 
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Figure 1. 1H NMR of the defatted MeOH extract of V. negundo.  (a) 500 MHz (11.75 tesla); (b) 400 MHz (9.4 tesla). The NMR solvent 
used was methanol-D4 and the internal standard was DMSO. 

 
 
 

 
 

Figure 2. 13C NMR of the defatted MeOH extract of V. negundo. (a) 125 MHz (11.75 Tesla); (b) 100 MHz (9.4 Tesla). The NMR 
solvent used was methanol-D4 and the internal standard was DMSO. The peaks were normalized to the DMSO peak.  

 
 
 

The k-means cluster obtained for 128 runs is shown in 
Figure 4 and the membership of each cluster is 

summarized in Table 1. Four clusters were defined a 
priori and the groupings obtained were consistent with 
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Figure 3. PCA of 128 runs. PC1 and PC2 explains only 41.5% of the variability (25.3% + 16.2%). The skree plot 
indicates that 9 PCs are needed to reach 80% explained variability. The numbers refer to the sample number which 
are given in Table 2. 

 
 
 

 
 

Figure 4. Multi-variate cluster profile by k-means. Cluster 1 is composed mainly of experimental samples that were 
deliberately allowed to degrade; cluster 2 is composed mainly of training set and submitted samples; clusters 3 and 4 

are composed mainly of commercial products.  Legend:  - training set;  - submitted samples commercial 

products;- experimental set. The numbers refer to the run numbers which are given in Table 2. 

 
 
 
the type of sample. Cluster 1 consists mainly of the 
experimental set which refers to samples that were 
intentionally allowed to degrade. Cluster 2 consists mainly 
of the training set and set of submitted samples. This 
indicates that commercial farms generally prepared their 
samples using a good drying protocol. Clusters 3 and 4 
are the commercial products. The experimental samples, 
however, were distributed in both clusters 1 and 2 since 

their characteristics varied widely depending on the 
sample treatment. 
 
 
Comparison 13C NMR at 100 MHz and 125 MHz 
 
In this experiment, we sought to compare the results of 
the 13C NMR spectra taken at100 and 125 MHz. The
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Table 1. Distribution of the different samples among the four clusters. (n = number of runs. % is calculated as = n/128).  
 

Sample Type 

Cluster 

1 2 3 4 Total 

n % n % n % n % n % 

Training 0 0.0 22 17.2 6 4.7 2 1.6 30 23.4 

Submitted 0 0.0 26 20.3 6 4.7 2 1.6 34 26.6 

Commercial 2 1.5 0 0.0 16 12.5 8 6.3 26 20.3 

Experimental 14 10.9 18 14.1 4 3.1 2 1.6 38 29.7 

Total 16 12.4 66 51.6 32 25.0 14 11.1 128 100.0 

 
 
 

 
 

Figure 5. Multi-variate cluster profile by k-means with four additional data 
points from two training set samples, each of which was analyzed at 125 
MHz (Y) and 100MHz (X). The four new samples appeared close to each 
other in cluster 3 (encircled).   

 
 
 
13C NMR of two samples was run at 100 MHz and 125 
MHz and the data from these runs were added to the k-
means cluster. Figure 5 shows the resulting k-means 
profile, where the new data at 100 MHz and 125 MHz are 
indicated. The new data points clustered very closely. 
This indicates that the 13C NMR spectra taken at 100 
MHz and 125 MHz give very similar results. 
 
 
Multivariate control chart from 13C NMR data 
 
Nine  PCs   were   used  to   generate   the  Hotelling’s T

2
 

multivariate control chart (Figure 6). The upper control 
limit (UCL) was set to the training set sample with the 
highest T

2
 value (in this case, this was run 123). This 

means that the runs that exceeded the UCL were 
considered rejected based on their 13C NMR profile.  
 
 
qTLC analysis 
 
The 64 V. negundo samples were analyzed twice by 
qTLC to measure the agnuside content giving 128 runs 
(Table 2). This is a univariate analysis using  agnuside as  
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Figure 6. Multi-variate control chart showing the T2 for 128 runs. Alpha = 0.115 is set so that the line of the upper control limit (UCL) 

crosses the training sample with highest value (run 123). Runs which are above the UCL of T2 = 23.31 are rejected. Legend:  - training 

set;  - submitted samples; - commercial products - experimental set. The numbers refer to the run number as indicated in Table 2. 

 
 
 
quantitative marker compound. 

There was no clear relationship between %agnuside 
content as measured by qTLC, its cluster grouping 
(Figure 4), and its T

2
 value in the control chart (Figure 5). 

For example, runs 75 to 78 (submitted samples) had low 
%agnuside content of 2.3, 2.2, 0.4, and 0.4%, 
respectively, but were below the UCL, while runs 103 and 
104 (experimental samples) had relatively high agnuside 
content (4.9 and 4.8%, respectively) but were rejected 
based on their T

2
 value. Some runs such as 69 and 70, 

had 0% agnuside, but were still within the UCL line. 
 
 
DISCUSSION 
 
The official pharmacopoeia method for the validation of 
herbal medicines relies on the use of thin layer 
chromatography (TLC), gas chromatography (GC), or 
high performance liquid chromatography (HPLC) for the 
analysis of chemical markers or pharmacologically-active 
components (EDQM, 2007; WHO, 2011). However, these 
methods which are based on the targeted analysis of one 
or two compounds cannot give an adequate assessment 
of the quality of an herbal sample which contains 
hundreds of compounds. 

The objective of this  work  was  to  determine  whether 

the profile of all carbon atoms generated by 13C NMR is 
able to provide an accurate multivariate profile of a 
complex mixture, such as extracts of a medicinal plant. 
To do this, four types of samples were obtained: a 
training set, submitted samples, commercial samples, 
and experimental samples. The results from the k-means 
cluster, closely agreed with the type of samples that were 
analyzed. This gives good confidence that the use 13C 
NMR with subsequent multivariate analysis using k-
means cluster is able to accurately generate a chemical 
profile of the extract. Further, a multivariate control chart 
was generated from which an upper control limit (UCL) of 
the multivariate profiles of the samples could be set. 

Comparison of the results of the multivariate control 
chart and the univariate qTLC analysis using agnuside as 
marker compound showed poor correspondence. The 
results showed that a sample can have a high content of 
agnuside but be above the UCL of the multi-variate 
control chart. This highlights the difference between a 
targeted analysis of a single compound and a multivariate 
chemical profile: a single compound cannot represent the 
quality of a complex mixture. 

To obtain reliable statistical results, a large training set 
is needed and the method of extraction and spectroscopic 
measurement must be optimized and standardized to 
avoid     bias,   maximize    reproducibility   and   minimize  
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Table 2. Summary of results of qTLC analysis using agnuside as marker compound, runs with T2 value above 23.31 are rejected. cluster grouping, 
and Hoteling T2 value. Selected runs are indicated in the cluster plot (Figure 4) and control chart (Figure 5). 
 

Run No. Sample Type % Agnuside Cluster No. T
2 

Value  Run No. Sample Type % Agnuside Cluster No. T
2 

Value 

1 Training 6.2 2 3.7  65 Commercial 1.9 3 12.33 

2 Training 6.1 2 2.9  66 Commercial 1.8 3 13.13 

3 Training 2.8 2 17.43  67 Commercial 4.3 3 3.95 

4 Training 2.8 2 14.19  68 Commercial 4.4 3 5.82 

5 Experimental 0.6 1 14.29  69 Commercial 0.0 1 24.29 

6 Experimental 0.7 1 15.94  70 Commercial 0.0 1 20.00 

7 Experimental 0.9 1 22.92  71 Commercial 1.7 4 23.25 

8 Experimental 0.9 1 15.79  72 Commercial 1.7 4 65.93 

9 Experimental 7.4 2 34.89  73 Commercial 1.6 4 237.38 

10 Experimental 7.3 2 16.59  74 Commercial 1.6 4 126.98 

11 Submitted 6.4 2 16.18  75 Submitted 2.3 2 7.64 

12 Submitted 6.8 2 16.17  76 Submitted 2.2 2 4.75 

13 Submitted 5.4 3 20.73  77 Submitted 0.4 3 12.06 

14 Submitted 5.4 3 8.38  78 Submitted 0.4 3 16.72 

15 Commercial 1.2 3 24.52  79 Submitted 4.4 2 18.27 

16 Commercial 1.1 3 24.82  80 Submitted 3.9 2 12.14 

17 Commercial 2.8 4 54.16  81 Experimental 0.0 1 32.29 

18 Commercial 2.9 4 35.28  82 Experimental 0.0 1 32.62 

19 Training 3.7 3 4.45  83 Experimental 0.0 1 81.93 

20 Training 3.5 3 4.59  84 Experimental 0.0 1 82.27 

21 Experimental 5.0 2 1.54  85 Training 2.4 2 10.47 

22 Experimental 5.3 2 1.80  86 Training 2.5 2 6.74 

23 Training 5.8 2 4.11  87 Experimental 0.0 1 44.84 

24 Training 5.4 2 3.97  88 Experimental 0.0 1 55.63 

25 Experimental 0.3 3 11.80  89 Experimental 2.1 4 388.86 

26 Experimental 0.4 3 12.80  90 Experimental 2.0 4 170.53 

27 Training 2.4 3 7.31  91 Training 2.2 2 5.37 

28 Training 2.4 3 13.16  92 Training 2.3 2 7.10 

29 Training 4.9 2 3.33  93 Experimental 1.4 2 3.89 

30 Training 4.9 2 2.87  94 Experimental 1.7 2 6.33 

31 Training 5.0 2 7.12  95 Training 2.0 4 22.62 

32 Training 5.0 2 7.27  96 Training 1.8 4 22.12 

33 Training 7.0 2 3.41  97 Experimental 0.0 1 72.77 

34 Training 6.8 2 5.85  98 Experimental 0.0 1 69.64 

35 Training 3.8 3 8.56  99 Training 7.0 2 12.53 



Lagurin et al.          19 
 
 
 

Table 2. Contd. 
 

36 Training 3.7 3 8.58  100 Training 6.6 2 11.16 

37 Submitted 4.6 2 2.47  101 Experimental 0.3 3 42.75 

38 Submitted 4.4 2 1.60  102 Experimental 0.2 3 46.10 

39 Submitted 5.4 2 1.71  103 Experimental 4.9 2 136.11 

40 Submitted 5.6 2 1.78  104 Experimental 4.8 2 195.96 

41 Submitted 4.8 2 3.30  105 Submitted 1.3 3 18.19 

42 Submitted 4.5 2 3.64  106 Submitted 1.4 3 12.95 

43 Submitted 3.9 2 10.55  107 Submitted 2.5 2 2.01 

44 Submitted 4.3 2 8.79  108 Submitted 2.4 2 4.36 

45 Submitted 4.4 2 2.83  109 Submitted 3.7 2 15.10 

46 Submitted 4.9 2 4.22  110 Submitted 3.1 2 12.93 

47 Submitted 4.5 2 10.85  111 Submitted 2.5 2 7.24 

48 Submitted 4.1 2 16.55  112 Submitted 2.2 2 8.26 

49 Experimental 4.4 2 5.82  113 Submitted 2.7 2 5.81 

50 Experimental 4.1 2 23.28  114 Submitted 2.5 2 3.46 

51 Experimental 5.2 2 10.45  115 Submitted 1.5 4 13.95 

52 Experimental 5.1 2 20.39  116 Submitted 1.5 4 15.39 

53 Experimental 5.6 2 14.88  117 Commercial 1.5 4 4.12 

54 Experimental 5.5 2 23.48  118 Commercial 1.5 4 4.75 

55 Commercial 2.6 3 2.94  119 Training 1.7 2 5.06 

56 Commercial 2.5 3 2.92  120 Training 1.7 2 4.66 

57 Commercial 4.3 3 8.34  121 Experimental 0.0 1 60.98 

58 Commercial 4.6 3 5.49  122 Experimental 0.0 1 72.50 

59 Commercial 0.9 3 17.00  123 Training 3.1 2 23.93 

60 Commercial 0.9 3 22.19  124 Training 3.0 2 18.34 

61 Commercial 2.1 3 6.11  125 Experimental 0.5 2 11.23 

62 Commercial 2.4 3 7.06  126 Experimental 0.5 2 10.33 

63 Commercial 3.5 3 4.95  127 Experimental 7.7 2 13.73 

64 Commercial 3.4 3 8.33  128 Experimental 7.7 2 12.29 

 
 
 
variation.  In this procedure, the 60 highest 13C 
NMR peaks in each spectrum were selected. The 
use of fewer peaks makes the statistics easier to 
calculate but may decrease the chemical 
reliability. On the other hand, the use of a large 
number of peaks (>60) will  require  more  training 

set samples, which will make the procedure more 
time-consuming. 

Comparison of the 13C NMR profile generated 
at 100 and 125 MHz showed that, comparable 
profiles are generated. On the other hand, the 1H 
NMR  spectra  obtained at 400 and 500 MHz were 

clearly different. This means that 1H NMR profiles 
are comparable only at the same magnetic field 
strength while 13C NMR spectra from different 
magnetic field strengths may still be compared. 
However, further comparisons of 13C NMR 
spectra  using  bigger differences in magnetic field  
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should be done to determine how general this is. 

Finally, it is worth noting that NMR is one of several 
methods that can be used for a multivariate or fingerprint 
analysis of plant extracts. For example, fingerprint 
analysis of V. negundo seed samples from different 
regions in China was done using high-performance liquid 
chromatography (HPLC) with diode array detection, with 
hierarchical cluster analysis (HCA) (Shu et al., 2016); 
mass spectrometry together with HCA were used for the 
identification and quantitative analysis of phenolic 
compounds in V. negundo in other to identify possible 
chemical markers (Huang et al., 2015).   
 
 
Conclusions 
 

13C NMR spectra of extracts of medicinal plants can be 
used to generate a k-means cluster, which accurately 
represents the chemical profile of the samples. The 13C 
NMR data can also be used to generate a multivariate 

control chart which sets the upper control limit based on 
the 13C NMR profile. Comparison of the multivariate 
control chart with qTLC results showed poor 
correspondence. This indicates that a univariate analysis 
of a plant sample is useful only for quantification of the 
target compound but cannot be used for chemical 
profiling and standardization of medicinal plants. 
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