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Construction of weavings in the plane

Eden Delight Miro,* Aliw-iw Zambrano and Agnes Garciano

Department of Mathematics, Ateneo de Manila University, Loyola Heights, Quezon City, Metro Manila 1108,

Philippines. *Correspondence e-mail: eprovido@ateneo.edu

This work develops, in graph-theoretic terms, a methodology for systematically

constructing weavings of overlapping nets derived from 2-colorings of the plane.

From a 2-coloring, two disjoint simple, connected graphs called nets are

constructed. The union of these nets forms an overlapping net, and a weaving

map is defined on the intersection points of the overlapping net to form a

weaving. Furthermore, a procedure is given for the construction of mixed

overlapping nets and for deriving weavings from them.

1. Introduction

In recent years, scientists have gained a strong motivation to

study molecular-scale weavings, as coordination networks such

as metal–organic frameworks (MOFs) are produced using

principles in crystal engineering (Carlucci et al., 2003). These

materials often have a complicated architecture of multiple

disjoint molecular networks, which puzzled scientists as they

typically defy simple enumeration and explanation (Hyde et

al., 2016). Batten & Robson (1998) did the earliest investiga-

tion of the MOF catenation by reducing the structures of the

interpenetrating nets to their topological essence by just

looking at the relation on the intersection of the component

nets. This network or topological approach to crystal chem-

istry was also employed by Carlucci et al. (2003) to re-examine

some curious topological properties of polycatenated

networks. Using this approach, they discovered unexpected

topological features and non-conventional new linkages that

had previously been overlooked. In a more recent work, Hyde

et al. (2016) described a systematic but simple enumeration

scheme for generating some two-dimensional and three-

dimensional MOF weavings using two-dimensional surfaces.

Their analysis uncovered a remarkable simplicity beneath the

seemingly complex structure of the MOFs they studied.

Furthermore, they stress that this discovery ‘suggests the

importance of weavings and the relevance of lower-

dimensional descriptions of three-dimensional structures in

this technologically important class of advanced materials’.

This work is an attempt to contribute to this endeavor by

providing a systematic and algorithmic approach to

constructing symmetric weavings from colorings of the plane.

Moreover, we also wish to construct weavings that may be

used to build three-periodic nets, since Ramsden et al. (2009)

showed that three-dimensional crystalline Euclidean nets may

be constructed from weavings on the hyperbolic plane.

According to Hyde et al. (2016), there is no definite

meaning of molecular-scale weaving yet. In their study, a

weaving consists of multiple (unbounded) components that

are interlaced via regularly patterned under/over-crossings of

disjoint edges. In this study, we take a more formal and

abstract approach. We construct weavings of two sets of lines
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such that each set forms a simple, connected infinite graph

called a net derived from a 2-coloring of a plane X. In fact, the

methodology describes an explicit geometric embedding of

the graph in the plane X. Moreover, the construction ensures

that the vertices and edges of the nets are invariant under

the group of isometries in the plane used to construct the

2-coloring of the plane. Thereupon, we say that the resulting

embedding is symmetric.

In Miro et al. (2014), the authors discussed a procedure for

simultaneously constructing two geometrically identical nets

to form an overlapping net from 2-colorings of the plane using

an index-2 subgroup of a triangle group. A weaving map is

then defined on the overlapping net to form a weaving. In this

study, the authors take an alternative approach in the

construction of weavings by setting and developing the

framework of construction in graph-theoretic terms. The

framework is convenient as this allows us to show that, indeed,

the methodology yields simple, connected, infinite graphs.

Furthermore, the procedure for the construction of over-

lapping nets is modified – an overlapping net is now defined as

a union of nets. This modification allows us to construct

interesting weavings from what we refer to as mixed over-

lapping nets. In x5, we define a mixed overlapping net as a

union of nets derived from possibly different index-2

subgroups of the triangle group. We show that the modified

procedure can yield more general weavings when mixed

overlapping nets are considered.

2. Triangle tilings and their colorings

The springboard for the development of the methodology is

the relationship between colorings of the triangle tilings of the

plane and the subgroups of their corresponding triangle

groups studied by Provido et al. (2013), Decena et al. (2008)

and De las Peñas et al. (2007).

Consider a triangle � with interior angles �=p; �=q and �=r

where p, q and r are integers � 2. Reflecting � repeatedly on

its sides yields a triangle tiling T :¼ T ðp; q; rÞ of the plane X

by copies of �. The plane X is the Euclidean, elliptic or

hyperbolic plane depending on whether �=pþ �=qþ �=r is

equal to, greater than, or less than �. When p ¼ 6; q ¼ 2 and

r ¼ 4, triangle � shown in Fig. 1(a) exists in the hyperbolic

plane, and repeatedly reflecting it on its sides gives us the

triangle tiling T ð6; 2; 4Þ given in Fig. 1(b).

Here we use the Poincare disc model of the hyperbolic

planeH. In this model, the set of points are the points that lie

inside the unit disc; that is, H ¼ fðx; yÞjx2 þ y2 < 1g. Note that

the points on the boundary of the disc are not in the hyper-

bolic plane. Moreover, the lines of the hyperbolic plane are

arcs of circles orthogonal to the boundary of the unit disc as

well as the diameters of the disc. In Fig. 1(b), the arcs and

diameters in the interior of the disc are examples of hyperbolic

lines. This model of the hyperbolic plane is conformal, which

means that the hyperbolic measure of an angle is just its

Euclidean angle. However, the distance is distorted. In fact,

distances get exponentially larger as you approach the

boundary of the disc. For example, in Fig. 1(b), the triangles

appear smaller the closer one gets to the boundary of the disc,

but they are actually congruent in hyperbolic geometry. For an

introduction to hyperbolic geometry, see Anderson (2005).

Let P, Q and R be the reflections on the lines along the sides

of � opposite the angles �=p; �=q and �=r, respectively, as

shown in Fig. 1(a). The group G :¼ Gðp; q; rÞ of isometries

generated by P;Q;R is called the triangle group and has

group presentation hP;Q;RjP2 ¼ Q2 ¼ R2 ¼ ðQRÞ
p
¼ ðRPÞ

q

= ðPQÞ
r
¼ Ii, where I is the identity transformation.

Note that the triangle group G acts transitively on the tiling

T . Since any tile in T is the image of � under some element

of G, the G-orbit of � is the whole tiling T ; that is,

T ¼ fg�jg 2 Gg. Moreover, by construction, the only element

of G that maps � to itself is the identity I; hence,

stabGð�Þ ¼ fIg, where stabGð�Þ is the stabilizer of � in G.

Consequently, it can be shown that the mapping g 7! g� is

a one-to-one correspondence between G :¼ Gðp; q; rÞ and

T :¼ T ðp; q; rÞ. This implies that we can identify each tile in

the triangle tiling T with exactly one element in the triangle

group G, and vice versa. We will take advantage of this

correspondence in the following discussion.

By the construction of the triangle tiling T ¼ fg�jg 2 Gg,

we have that
S

g2Gg� ¼ X and �� \ g�� = ; for every non-

identity g 2 G, where �� is the interior of �. Thus, � is a

fundamental region of the triangle group G.

We now define a coloring of a triangle tiling T :¼ T ðp; q; rÞ

by an index-2 subgroup of its corresponding triangle group

G :¼ Gðp; q; rÞ. Consider an index-2 subgroup H of G and let
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Figure 1
(a) The reflections P;Q and R on the sides of triangle �, (b) the triangle tiling T ð6; 2; 4Þ and (c) the 2-coloring TH1

ð6; 2; 4Þ.



fI; ĝgg be a complete set of left coset representatives of H in G.

Then G ¼ H [ ĝgH and H \ ĝgH ¼ ;. For g 2 fI; ĝgg, let gH� =

fðghÞ�jh 2 Hg. Then T ¼ H� [ ĝgH� and H� \ ĝgH� ¼ ;,
so that H� and ĝgH� constitute a partition of the triangle

tiling T . We use this partition to define a coloring of T by H.

Consider the coloring map � : T ! T � fc1; c2g defined by

�ðtÞ ¼ ðt; c1Þ if t 2 H� and �ðtÞ ¼ ðt; c2Þ if t 2 ĝgH�, where c1

represents the color white and c2 represents the color black.

Intuitively, this mapping assigns the label c1 to the elements of

the set H�, and the label c2 to the elements of the set ĝgH�.

Note that the mapping � is well defined because H� and

ĝgH� form a partition of T . This results in a 2-coloring of

the triangle tiling T ðp; q; rÞ by H, which we denote by

T Hðp; q; rÞ ¼ ðH�� fc1gÞ [ ðĝgH�� fc2gÞ. Furthermore, we

now refer to H� as the set of all white tiles and ĝgH� as the set

of all black tiles.

Note that H acts on the colored tiling THðp; q; rÞ, and if

�H ¼ � [ ĝg�, then
S

h2H hð�HÞ ¼ X and ��H \ ðh��HÞ ¼ ;
for any non-identity h 2 H. Thus, �H ¼ � [ ĝg� is a funda-

mental region of H on the colored tiling THðp; q; rÞ.

To illustrate the methodology, consider the triangle group

G :¼ Gð6; 2; 4Þ and its associated triangle tiling T :¼
T ð6; 2; 4Þ as shown in Fig. 1(b). Let us construct the 2-coloring

of T by the index-2 subgroup H1 ¼ hQR;RP;QPi. Since P is

not in H1, the cosets H1 and PH1 partition G. Consequently,

H1� and PH1� partition the triangle tiling T . In this case,

we assign color c1 (white) to the tiles in H1� and color c2

(black) to the tiles in PH1�. The resulting 2-coloring

TH1
¼ TH1

ð6; 2; 4Þ is shown in Fig. 1(c). A fundamental region

of H1 is �H1
¼ � [ P�, which is a union of the adjacent white

tile � and black tile P� bounded by blue lines in Fig. 1(c).

2.1. Patches from colorings of triangle tilings

In this section, we define a patch of a colored triangle tiling.

Definition 1. A black patch or B-patch of a (black-and-

white) colored tiling is the union of a collection B1; . . . ;Bm of

black tiles which share a common vertex such that tiles B1 and

Bm are adjacent and, for i ¼ 1; . . . ;m� 1, the tiles Bi and Biþ1

are also adjacent. A white patch or W-patch is similarly

defined.

For example, the B-patches and the W-patches of TH1
are

the black and white tiles of the colored tiling, respectively.

Meanwhile, for an index-2 subgroup H2 ¼ hR;Q;PQP;PRPi

of Gðp; q; rÞ, a B-patch of TH2
is composed of 2p adjacent

black tiles and a W-patch is similarly composed of 2p adjacent

white tiles. In Figs. 2(a)–2(g), we illustrate the seven types of

B- and W-patches determined by the colorings of T by the

index-2 subgroups of Gð6; 2; 4Þ.

Remark 1. If t is a black tile, then it is part of a unique B-

patch; similarly, t is part of a unique W-patch if it is a white tile.

Another important observation is that since each subgroup Hi

sends the colored tiling THi
to itself, any element h 2 Hi sends

a B-patch to a B-patch and a W-patch to a W-patch.

3. General setting for the weaving construction

Before we present the weaving construction, we first give some

definitions from graph theory. A graph G ¼ ðV; EÞ consists of

a non-empty set V :¼ VðGÞ of vertices together with a set

E :¼ EðGÞ of edges. Each edge e 2 EðGÞ is associated with an

unordered pair fu; vg of (not necessarily distinct) elements of

V. If there are two edges associated with the same pair of

vertices, then such edges are called multiple edges. An edge e

associated with the unordered pair fu; vg with u ¼ v is called

a loop. A simple graph is a graph containing no loops or

multiple edges. In this study, the vertices and edges of a graph

G will be represented by points on a plane and undirected line
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Figure 2
The seven types of B- and W-patches by the coloring of T ð6; 2; 4Þ using the index-2 subgroups Hi of Gð6; 2; 4Þ for i ¼ 1; 2; . . . ; 7. (a) H1 ¼ hQR;RPi, (b)
H2 ¼ hR;Q;PQPi, (c) H3 ¼ hP;R;QRQ;QPQi, (d) H4 ¼ hRQR;P;Qi, (e) H5 ¼ hQR;Pi, (f) H6 ¼ hRP;Q;PQPi, (g) H7 ¼ hPQ;R;QRQi.



segments joining two points, respectively. Furthermore, in this

study, we define the intersection of edges of two graphs as the

intersection of their line segment representations.

A path P in a graph G is an alternate sequence of distinct

vertices and distinct edges which begins and ends with

vertices; that is, P is a sequence v0 � e1 � v1 � e2 � v2�

. . .�vk�1 � ek � vk, where each vi is a vertex and

ei ¼ fvi�1; vig is an edge for i ¼ 1; . . . ; k. A graph G ¼ ðV; EÞ is
connected if, for any two vertices u and v, there is a path from u

to v.

In this study, we define a net as a simple, connected graph.

Since the vertices and edges of a net are represented by points

and line segments on a plane, respectively, then a net is a

geometric embedding of a graph on a plane. In particular, in

this study, a net is derived from a coloring of a plane X and, by

construction, it is a symmetric embedding of the graph on the

plane X.

We say that two nets N ¼ ðV; EÞ and N
0
¼ ðV

0; E0Þ are

disjoint if N and N
0

have no vertices in common. Further-

more, we are interested in the union of disjoint nets

N ¼ ðV; EÞ and N
0
¼ ðV

0; E0Þ. We call such a union an over-

lapping net and denote it by O ¼ N [N
0
.

Given an overlapping netO of two disjoint netsN ¼ ðV; EÞ
and N

0
¼ ðV

0; E0Þ, we define the set of weaving points T of O

as T :¼ fðe; e0Þ 2 E � E0je and e0 intersect in Og. We may

interpret each element ðe; e0Þ of T as the intersection point of

the edges e and e0. Consequently, the set T may be interpreted

as the set of all intersection points of the edge sets E and E0.

We use this interpretation in this study. We now define a

weaving on a given overlapping net.

Definition 2. Let O be an overlapping net derived from nets

N and N
0
, and let T be the set of weaving points of O. A

weaving map ! on O is a function from T to the two-point set

f�;�g. A weaving W on O is a tuple W ¼ ðO; !Þ of the

overlapping net O together with a weaving map ! on O. We

say thatW is a proper weaving if !ðTÞ ¼ f�;�g. We say that e

is above e0 if !ðe; e0Þ ¼ �; while if !ðe; e0Þ ¼ �, we say that e is

below e0.

4. The weaving construction

As before, we let H be an index-2 subgroup of the triangle

group G :¼ Gðp; q; rÞ associated with the triangle tiling

T :¼ T ðp; q; rÞ. In the preceding sections, we have discussed

the construction of the 2-coloring TH :¼ THðp; q; rÞ and the

identification of the B-patches and W-patches. In this section,

from the B- and W-patches of a colored tiling TH , we construct

two disjoint nets: the B-netN B using the B-motif �bH and the

W-net NW using the W-motif �wH . These constructions will

then yield an overlapping net OH . The penultimate step is to

define a weaving map !H on the set of weaving points TH of

OH . Finally, we get a weaving WH ¼ ðOH; !HÞ.

4.1. Net construction: B- and W-vertices

In x2.1, we defined the B- and W-patches determined by a

2-coloring TH of the tiling T by a subgroup H of G. Using

these patches, we now define the vertex and edge sets of two

disjoint nets.

Definition 3. The B-vertex set denoted by VB is the set of the

centroids of the B-patches in TH , and the W-vertex set VW is

the set of centroids of the W-patches in TH . The elements of

VB and VW are referred to as the B- and W-vertices, respec-

tively.

In Figs. 2(a)–2(g), we also illustrate the seven B- and W-

vertex sets corresponding to the colorings of T ð6; 2; 4Þ by the

index-2 subgroups of Gð6; 2; 4Þ. The B-vertices are the black

points, while the W-vertices are the green points.

Remark 2. By Definition 3 and Remark 1, each tile t in THi

contains a B-vertex if it is a black tile, or a white W-vertex if it

is a white tile. Moreover, any element h 2 Hi sends a B-vertex

to a B-vertex and a W-vertex to a W-vertex.

4.2. Net construction: B- and W-edges

Now we describe a method for constructing B- and W-

edges. Note that the generating set of any subgroup H of the

triangle group G need not be unique. In addition, any pair of a

black and a white tile in a 2-coloring TH is a fundamental

region of H. However, a natural choice would be the white tile

� and one of its adjacent black tiles g� for some g =2H. Before

we construct the B- and W-motifs on �H which we will use

to construct the B- and W-edges, we impose conditions in

choosing a generating set of H and an element g =2H in

constructing a fundamental region (denoted as FR) of H on

TH .

The FR condition. For an index-2 subgroup H, choose a

generating set fh1; . . . ; hlg and an element g 2 G but g =2H

satisfying both conditions:

(FR1) � and g� are edge-adjacent, and

(FR2) for each i ¼ 1; . . . ; l, we have f i \� 6¼ ; and

f i \ g� 6¼ ; where f i ¼ fx 2 Xjhix ¼ xg.

We refer to �H ¼ � [ g� as a fundamental region of H

with respect to the generating set fh1; . . . ; hlg, and we say that

�H is constructible.

The importance of the FR condition will be explained at the

end of the section.

In Table 1, we give a constructible fundamental region

determined by a given generating set of Hi.

Remark 3. By Remark 2, for a constructible fundamental

region �H ¼ � [ g�, the white tile � contains a unique

W-vertex, say wH, and the black tile g� contains a unique

B-vertex, say bH. We call the vertices wH and bH the initial

W-vertex and the initial B-vertex of �H; respectively.

We now construct B- and W-motifs on �H .

The motif construction. Let �H be a constructible funda-

mental region of H with respect to a given generating set, say

fh1; . . . ; hlg. Let b :¼ bH be the initial B-vertex. For each

generator hi, if hi does not fix b, construct edges fb; hibg and
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fb; h�1
i bg by connecting the B-vertex b to the B-vertices hib

and h�1
i b using black line segments. The B-motif �bH consists

of the B-vertices together with the segment of the edges

fb; hibg and fb; h�1
i bg in �H for all hi 2 fh1; . . . ; hlg. The

W-motif �wH is similarly obtained.

Consider the 2-coloring of T ð6; 2; 4Þ by subgroup H2 ¼

hR;Q;PQPi of Gð6; 2; 4Þ shown in Fig. 3(a), with its

constructible fundamental region �H2
¼ � [ P�. Let

b :¼ bH2
be the initial B-vertex of �H2

. Since among the given

generators of H2 only Q does not fix b, we only construct

the B-edge fb;Qbg shown in Fig. 3(b). If we let w :¼ wH2
be

the initial W-vertex of �H2
, we only construct the edge

fw; ðPQPÞwg shown in Fig. 3(d) since R and Q fix w. Note that

the B-motif �bH2
consists of the segment of the B-edge

fb;Qbg in �H2
and the B-vertex b, shown in Fig. 3(c); similarly,

the W-motif �wH2
consists of the segment of the W-edge

fw; ðPQPÞwg in �H2
and the W-vertex w shown in Fig. 3(e).

4.3. Overlapping net construction

Since we assume that the set fh1; . . . ; hlg is a generating

set of the subgroup H of G, this means that any h 2 H can

be written as a finite product of hi and h�1
i for some

i ¼ 1; 2; . . . ; l. We use these generators and the B- and

W-motifs to construct the edges of two disjoint nets.

The edge construction. Let K ¼ fh1; . . . ; hlg [ fh
�1
1 ; . . . ; h�1

l g

and b :¼ bH the initial B-vertex of �H. Consider the B-motif

�bH , and let H act on �bH such that when black line segments

abut, continuously join them to form B-edges. The action of H

on the motif �bH produces a graph N B ¼ ðVB; EBÞ called a

B-net, where VB ¼ fhbjh 2 Hg, EB ¼ fhfb; kbgjh 2 H and

k 2 Kg and where hfb; kbg :¼ fhb; hkbg. The action of H

on the motif �wH produces a graph NW ¼ ðVW; EWÞ called a

W-net which is similarly constructed.

In Fig. 3(c), we have seen the B-motif �bH2
, where

H2 ¼ hR;Q;PQPi is a subgroup of Gð6; 2; 4Þ. We now

construct the B-netN B determined by H2. The action of Q on

�bH2
yields the B-edge fb;Qbg shown in Fig. 4(a). Letting R

act on ½�bH2
[Q�bH2

	 yields another B-edge fb; ðRQÞbg given

in Fig. 4(b). Using the generator PQP, we get the edge

fb; ðPQPÞðRQÞbg shown in Fig. 4(c). Continuing the process,

we get the B-net N B determined by H2 shown in Fig. 4(d).

In the following proposition, we show that the resulting

graphs N B and NW are indeed nets.

Proposition 1. The graphs N B ¼ ðVB; EBÞ and NW ¼

ðVW; EWÞ are nets.
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Table 1
Some possible constructible fundamental regions for Hi.

Subgroup Hi of
Gðp; q; rÞ Generating sets

Constructible
FR

H1 hQR;RPi � [ R�
hQR;PQi � [Q�
hRP;PQi � [ P�

H2 hR;Q;PQP;PRPi � [ P�
H3 hP;R;QRQ;QPQi � [Q�
H4 hRQR;RPR;P;Qi � [ R�
H5 hQR;P;RPRi � [ R�
H6 hRP;Q;PQPi � [ P�
H7 hPQ;R;QRQi � [Q�

Figure 4
The recursive construction of B-net N B.

Figure 3
(a) The colored tiling TH2

ð6; 2; 4Þ; (b) edge fb;Qbg in black and (c) the B-motif �bH2
; and (d) edge fw; ðPQPÞwg in green and (e) the W-motif �wH2

.



Proof. The simplicity of the graph follows from construction

and the fact that the elements of H are isometries. We now

show that the graphN B is connected. To do this, it is sufficient

to show that there exists a path from the initial B-vertex b to

any vertex in VB.

Let b be the initial B-vertex of �H and K ¼

fh1; . . . ; hlg [ fh
�1
1 ; . . . ; h�1

l g with H ¼ hh1; h2; . . . ; hli. Let

v 2 VB n fbg such that v ¼ hb, for some h 2 H. Suppose

h ¼ k1 . . . kr where ki 2 K for i ¼ 1; . . . ; r. For the case when

r ¼ 1, by assumption, we have that v ¼ k1b is not the point b,

which implies that the pair fb; k1bg is a B-edge in EB by

construction. Consequently, the sequence b� fb; k1bg � k1b

¼ v is a path as desired. Note that for i ¼ 1; . . . ; r, if b 6¼ kib,

the pair fb; kibg is a B-edge in EB, and that for any h0 2 H, the

pair h0fb; kibg ¼ fh
0b; h0kibg is also a B-edge in EB. Define

ei :¼ ðk1 . . . ki�1Þb; ðk1 . . . ki�1kiÞb
� �

¼ ðk1 . . . ki�1Þfb; kibg;

for i ¼ 1; 2; . . . ; r and with k0 the identity isometry I. If

b 6¼ kib, ei is a B-edge in EB whose endpoints are the

B-vertices ðk1 . . . ki�1Þb and ðk1 . . . kiÞb. On the other hand,

suppose b ¼ kib, the B-vertices ðk1 . . . ki�1Þb and ðk1 . . . kiÞb

are the same so that ei is not a B-edge since we do not consider

loops in EB. Now, construct the sequence

b� e1 � k1b� e2 � k1k2b� . . .� ðk1k2 . . . ki�1Þb

¼ ðk1k2 . . . ki�1Þkib� . . .� er � k1k2 . . . kr�1krb ¼ hb

where all ei =2EB are not included.

It is easy to see that this sequence is a path from b to v ¼ hb

inN B. Thus,N B is connected. Hence,N B is a net. By a similar

argument, one can show that NW is also a net. &

At this point, we illustrate what happens when the FR

condition is not satisfied. Basically, the FR condition is

imposed to avoid wild nets. We consider a netN ¼ ðV; EÞ wild

if any of these conditions are not satisfied:

(E1) the endpoints of an edge e 2 E are points associated

with vertices in V; and

(E2) if two line segments associated with two distinct edges

intersect, their intersection must be a point in V.

In the literature, we find that these are the types of nets that

are relevant to the study of the architecture of MOFs and

others.

Note that, by the motif and edge constructions, a B-net N B

is derived from a B-motif �bH that lies inside a constructible

fundamental region �H by letting H act on �bH . Thus, to

ensure that E2 is satisfied by the B-net N B, we only need to

make sure that in the B-motif �bH the segments of any two

distinct B-edges satisfy E2. However, the motif construction

exposes us to the possibility of violating E1. This is where the

FR condition becomes important.

To illustrate this point, let us consider the index-2 subgroup

H1 ¼ hQR;RPi of Gð4; 4; 2Þ and its non-constructible funda-

mental region �0H1
¼ � [Q� (bounded by red in Fig. 5a).

Note that �0H1
is not constructible since Q� \ f RP ¼ ;, where

f RP is the fixed set of the rotation RP. In Fig. 5(a), we have the

pair of B-edges fb0; ðQRÞb0g and fb0; ðRQÞb0g in blue and the

pair of B-edges fb0; ðRPÞb0g and fb0; ðPRÞb0g in green. To get

the motif �0bH1
, we basically disregard the segments of these

B-edges that lie outside �0H1
. The resulting B-motif �0bH1

consists of segments of these B-edges in �0H1
as shown in Fig.

5(b). Proceeding with the edge construction, we let H1 act on

the B-motif �0bH1
and a partial result is shown in Fig. 5(c).

Note that while the blue B-edges are fully formed, the green

B-edges are not and fail to satisfy E1 as one of the endpoints

of the green B-edges are not B-vertices. We have no problem

with the blue B-edges fb0; ðQRÞb0g and fb0; ðRQÞb0g precisely

because � and Q� both intersect with the fixed set of QR

(condition FR2 is satisfied on generator QR). But, as noted

earlier, we have Q� \ f RP ¼ ; (fails condition FR2 on

generator RP), which resulted in the problematic scenario

with the green B-edges. Note that segments of the green edges

fb0; ðRPÞb0g and fb0; ðPRÞb0g are not recovered.

Definition 4. Let N B ¼ ðVB; EBÞ and NW ¼ ðVW; EWÞ be

the nets derived from a 2-coloring by H. The overlapping net

OH determined by H is the union of N B and NW . The motif

�mH of an overlapping net OH :¼ N B [ NW is the union of

the B-motif �bH of N B and the W-motif �wH of NW.

Note that, in this methodology, the component netsN B and

NW are first constructed independently, and then the over-
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Figure 5
The problematic consequence when the FR condition is not satisfied.



lapping net OH is constructed by getting the union of the nets

N B and NW . Observe that if, on the other hand, we consider

the motif �mH :¼ �bH [�wH and let H act on it, then we get

the overlapping netOH . This simultaneous construction of the

B- and W-nets to form OH is similar to the construction

discussed in Miro et al. (2014). In x5, we will show that the

construction of OH as a union of independently constructed

nets is fruitful as it allows us to construct more interesting

weavings.

4.4. Weaving construction

Let TH ¼ fðeb; ewÞ 2 EB � EW jeb and ew intersect in OHg be

the set of weaving points of an overlapping net OH , and let P

be the set of weaving points in the motif �mH ¼ �bH [�wH of

OH . We say that two weaving points p and p0 are identifiable

under H if p ¼ hp0 for some h 2 H.

We now define the weaving map !H : TH ! f�;�g by first

assigning values to !HðpÞ, for each p 2 P, with every pair of

identifiable weaving points in P assigned identical values. We

then extend !H to TH as follows: for each weaving point

q 2 TH , let !HðqÞ ¼ !HðpÞ where p 2 P such that q ¼ hp for

some h 2 H. In the following, we argue that this extension is

well defined.

Proposition 2. Any weaving point q 2 TH of OH is of the

form hp for some p 2 P and h 2 H.

Proof. Suppose q 2 OH is a weaving point; that is, q is an

intersection point of a B-edge and a W-edge. Since OH can be

constructed by letting H act on �mH ¼ �bH [�wH , there exist

pq 2 �mH and hq 2 H such that q ¼ hqpq . Since hq is an

isometry, its inverse h�1
q is also an isometry and so preserves

incidence. Furthermore, as an element of H, h�1
q sends B-edges

to B-edges and W-edges to W-edges. Thus, pq ¼ h�1
q q must also

be an intersection of a B-edge and a W-edge in �mH . This

implies that pq 2 P. &

Note that, since �mH is a fundamental region of H on the

colored tiling THðp; q; rÞ, �mH contains exactly one point from

the orbits of H, except on its boundary which may contain

duplicates of representatives of some orbits. Hence, in the

proof, if pq is in the interior of �mH, then it follows that it is

unique so that we define !HðqÞ :¼ !HðpqÞ unambiguously. On

the other hand, if pq is on the boundary of �mH, then there

may exist duplicate orbit representatives p0q with q ¼ h0qp0q for

some h0q 2 H. However, since pq and p0q belong to the same

orbit H, they are identifiable weaving points. Then, as in the

previous case, we define !HðqÞ :¼ !HðpqÞ ¼ !Hðp
0
qÞ. Thus, in

either case, the extension is well defined.

Clearly, if the motif �mH has only one weaving point, then it

will not yield a proper weaving as T ¼ f�g or T ¼ f�g. To

construct a weaving when there are two unidentifiable

weaving points in the motif �mH, we assign to one weaving

point the � value and to the other the � value and then let H

act on �mH with assigned values.

Consider a 2-coloring TH3
ð6; 2; 4Þ of the triangle tiling by

subgroup H3 of Gð6; 2; 4Þ shown in Fig. 2(c), where H3 ¼

hP;R;QRQ;QPQi. A constructible fundamental region of

H3 is �H3
¼ � [Q�. The overlapping net OH3

is shown in

Fig. 6(a) and its motif �mH3
is given in Fig. 6(b). Note that

in �mH3
there are two weaving points denoted by p1 and p2.

Since p1 is on an edge of � while p2 is on the vertex with

angle �=4, no element of H3 will send one to the other.

Hence, p1 and p2 are non-identifiable weaving points. We can

then define two weaving maps !H3
, !0H3

: TH3
! f�;�g as

ð!H3
ðp1Þ; !H3

ðp2ÞÞ ¼ ð�;�Þ and ð!0H3
ðp1Þ; !

0
H3
ðp2ÞÞ ¼ ð�;�Þ.

The resulting weavings WH3
¼ ðOH3

; !H3
Þ and W0H3

¼

ðOH3
; !0H3
Þ are shown in Figs. 6(c)–6(d), respectively.

4.5. Improper to proper weavings

By Definition 2, a weavingW ¼ ðO; !Þ is said to be proper

if !ðTÞ ¼ f�;�g. In the methodology just presented,

however, there are instances when !ðTÞ ¼ f�g or

!ðTÞ ¼ f�g, resulting in what we call an improper weaving.

Certainly, we have an improper weaving when

(i) the set of weaving points P in �mH contains only one

element, or

(ii) every pair of weaving points in P is identifiable.

To obtain a proper weaving when either (i) or (ii) occurs, we

use the fact that a fundamental region �H of H in T ðp; q; rÞ

contains n copies of � if H is an index-n subgroup of the

triangle group G. In the following, we describe the process of

extracting a proper weaving from an improper one.

From improper to proper weaving. When either condition

(i) or (ii) above occurs for an overlapping netOH , consider an
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Figure 6
(a) The overlapping net OH3

, (b) the motif �mH3
, and the weavings (c) WH3

ðOH3
; !H3
Þ and (d) W0H3

ðOH3
; !0H3

Þ.



index-2 subgroup N of H. Then a fundamental region �N of N

consists of four copies of � or, equivalently, �N consists of two

copies of �H. The resulting motif �mN determined by N on

OH consists of two copies of the original motif �mH. This

means that the number of weaving points in �mN is more than

the number in �mH . Note, however, that the set of all weavings

points is still the same; that is, TH ¼ TN . If not every pair of

weaving points in �mN is identifiable under N, then we are

done. But should an improper weaving still occur, the process

is repeated either by considering another index-2 subgroup of

H or an index-2 subgroup of N. Once at least two unidentifi-

able weaving points are obtained, assign values � and � to

said weaving points and we are done.

As an example, let us consider a 2-coloring T H4
ð6; 2; 4Þ of

the triangle tiling T ð6; 2; 4Þ by H4 shown in Fig. 2(d), where

H4 ¼ hRQR;P;Qi. It has a constructible fundamental region

�H4
¼ � [ R�. In Fig. 7(a), we have the overlapping netOH4

with its motif �mH4
bounded by broken blue lines. Note that

the motif �mH4
only has one weaving point; that is, PH4

¼ fq1g.

Thus, we have an improper weaving.

Now, we consider an index-2 subgroup N ¼ hP;RQRQi of

H4. A fundamental region �N ¼ �H4
[Q�H4

of N is

bounded by violet lines in Fig. 7(a). The resulting motif �mN

determined by N onOH4
is given in Fig. 7(b). The bigger motif

�mN now has two weaving points denoted by q1 and q2. These

two weaving points are non-identifiable in �mN since Q =2N.

Note that TN ¼ TH4
, but PH4


 PN ¼ fq1; q2g. As in the

previous example, we can define two weaving maps

!N , !0N : TN ! f�;�g as ð!Nðq1Þ; !Nðq2ÞÞ ¼ ð�;�Þ and

ð!0Nðq1Þ; !
0
Nðq2ÞÞ ¼ ð�;�Þ, which yields the weavings

WN ¼ ðOH4
; !NÞ and W0N ¼ ðOH4

; !0NÞ shown in Figs. 7(c)–

7(d), respectively.

4.6. Weaving patterns

In this section we give some of the weaving patterns we

derived from 2-colorings of the triangle tiling T ð6; 2; 4Þ using

the seven index-2 subgroups H1 to H7 of the triangle group

Gð6; 2; 4Þ. These weavings are shown in Fig. 8. The weavings

WM and WN are derived from improper weavings WH2
and

WH4
, respectively, where M ¼ hQ;PQP;RQR;PRQRPi is an

index-2 subgroup of H2 and N ¼ hP;RQRQi is an index-2

subgroup of H4.

5. Weavings from mixed overlapping nets

In this section, we define and construct mixed overlapping nets

by combining (B- or W-) nets of possibly distinct index-2

subgroups of Gðp; q; rÞ. The following definition makes sense

because of Proposition 1.

Definition 5. Let N ¼ ðV; EÞ and N
0
¼ ðV

0; E0Þ be (B- or

W-) nets of index-2 subgroups H and H0 of Gðp; q; rÞ,

respectively. The nets N and N
0

are said to be compatible if

E \ E
0
¼ ;. A mixed overlapping net ON ;N 0 is the union of

compatible nets N and N
0
.

Consider the triangle group Gð4; 4; 2Þ ¼ hP;Q;RjP2 ¼ Q2

= R2 ¼ ðQRÞ4 ¼ ðRPÞ4 ¼ ðPQÞ2 ¼ Ii, where I is the identity

transformation together with its associated triangle tiling

T ð4; 4; 2Þ. In Fig. 9, we give some of the (B- or W-) nets of the

index-2 subgroups of Gð4; 4; 2Þ with the tiling T ð4; 4; 2Þ in the

background. For the purposes of our discussion, we use the

following notations: let N 1 be the B-net of H1 ¼ hQR;RPi,

N
0

1 the W-net of H1 ¼ hQR;PQi, N 2 the B-net of H2 ¼

hR;Q;PRPi, N 3 the B-net of H3 ¼ hP;R;QRQi, N 4 the

B-net of H4 ¼ hP;Q;RQR;RPRi, N 5 the B-net of H5 ¼

hP;QR;RPRi, N 6 the B-net of H6 ¼ hQ;RPi, and N 7 the

B-net of H7 ¼ hR;PQ;QRQi.

For example, the netsN 2 andN 3, in Figs. 9(c) and 9(d), are

not compatible. If we combine these nets, some edges of N 2

will lie on top of some edges of N 3. We do not consider non-

compatible nets in the construction of mixed overlapping nets

to avoid such a scenario. On the other hand, the net N 1 is

compatible with all the other nets in Fig. 9. In Fig. 10, we give

the mixed overlapping nets derived by combining the net N 1

with each of the nets in Figs. 9(b)–9(h).

We now construct weavings on mixed overlapping nets. Let

ON ;N 0 ¼ N [ N
0

be a mixed overlapping net, where

N ¼ ðV; EÞ andN
0
¼ ðV

0; E0Þ are (B- or W-) nets of H and H 0,

respectively. Note that, by construction, the subgroups H and

H 0 act on the nets N and N
0
, respectively. Consequently,

HN ;N 0 ¼ H \H0 acts on the mixed overlapping netON ;N 0 . We

define a motif �N ;N 0 of a mixed overlapping net ON ;N 0 as a

fundamental region of HN ;N 0 ¼ H \H 0 (acting on ON ;N 0)

contained in a constructible fundamental region �H of H or

�H0 of H 0 [both acting on T ðp; q; rÞ]. Thus, we can reconstruct

ON ;N 0 from its motif �N ;N 0 by letting HN ;N 0 act on �N ;N 0 . We
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Figure 7
(a) The overlapping net OH4

, (b) the bigger motif �N, and the weavings (c) WN ¼ ðOH4
; !NÞ and (d) W0N ¼ ðOH4

; !0NÞ.



say that two weaving points p and p0 on ON ;N 0 are identifiable

under HN ;N 0 if p ¼ hp0 for some h 2 HN ;N 0 .

As in x4.4, we first consider the set TN ;N 0 ¼

fðe; e0Þ 2 E � E0je and e0 intersect in ON ;N 0g of weaving points

ofON ;N 0. Let P 
 TN ;N 0 be the set of weaving points ofON ;N 0

in the motif �N ;N 0. Now, define the weaving map

!N ;N 0 : TN ;N 0 ! f�;�g. As before, first assign values to

!N ;N 0 ðpÞ for each p 2 P with every pair of identifiable weaving

points assigned identical value, and then for each weaving

point q 2 TH define !N ;N 0ðqÞ :¼ !N ;N 0ðpÞ where p 2 P such

that q ¼ hp for some h 2 HN ;N 0 . By the same argument in

proof of Proposition 2, this extension is well defined. Then the

tuple WN ;N 0 ¼ ðON ;N 0 ; !N ;N 0Þ is a weaving on the mixed

overlapping net ON ;N 0 .

As an illustration, consider the mixed overlapping net

ON 1;N 7
¼ N 1 [N 7 shown in Fig. 11(a), whereN 1 is the B-net

of H1 ¼ hQR;RPi with constructible fundamental region

�H1
¼ � [ R�, and N 7 is the B-net of H7 ¼ hR;PQ;QRQi

research papers
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Figure 8
Weavings constructed from the index-2 subgroups of triangle group Gð6; 2; 4Þ. (a)WH1

, (b)WM fromWH2
, (c)WH3

, (d)WN fromWH4
, (e)WH5

, (f)
WH6

, (g) WH7
.

Figure 9
Some of the nets derived from the index-2 subgroups of Gð4; 4; 2Þ. (a) N 1, (b) N

0

1, (c) N 2, (d) N 3, (e) N 4, (f) N 5, (g) N 6, (h) N 7.
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Figure 10
Some mixed overlapping nets. (a) ON 1;N

0
1
, (b) ON 1;N 2

, (c) ON 1;N 3
, (d) ON 1;N 4

, (e) ON 1;N 5
, (f) ON 1;N 6

, (g) ON 1;N 7
.

Figure 11
The mixed overlapping nets (a) ON 1;N 7

and (c) ON 1;N
0
1

on T ð4; 4; 2Þ with their weaving points and their motifs (b) �N 1;N 7
and (d) �N 1;N

0
1
.

Figure 12
Weavings on mixed overlapping nets. (a) WN 1;N

0
1
, (b) WN 1;N 2

, (c) WN 1;N 3
, (d) WN 1;N 4

, (e) WN 1;N 5
, (f) WN 1;N 6

, (g) WN 1;N 7
, (h) W0N 1;N 7

.



with constructible fundamental region �H7
¼ � [Q�.

The area �H1
[Q�H1

, outlined in yellow in Fig. 11(a),

contains the motif �N 1;N 7
of ON 1;N 7

shown in Fig. 11(b).

The motif �N 1;N 7
has three non-identifiable weaving points

under HN 1;N 7
¼ hQP;RPRP;RQRPi, so there are eight

possible weaving values. We define two weaving maps

!N 1;N 7
; !0
N 1;N 7

: TN 1;N 7
! f�;�g as ð!N 1;N 7

ðp1Þ; !N 1;N 7
ðp2Þ;

!N 1;N 7
ðp3ÞÞ ¼ ð�;�;�Þ and ð!0

N 1;N 7
ðp1Þ; !

0
N 1;N 7
ðp2Þ;

!0
N 1;N 7
ðp3ÞÞ ¼ ð�;�;�Þ. The resulting weavings WN 1;N 7

¼

ðON 1;N 7
; !N 1;N 7

Þ and W0N 1;N 7
¼ ðON 1;N 7

; !0N 1;N 7
Þ are shown

in Figs. 12(g)–12(h).

For our final example, we construct a weaving on the mixed

overlapping net ON 1;N
0
1
¼ N 1 [N

0

1. We note that ON 1;N
0
1

is a

combination of two distinct nets derived from the same

subgroup H1, albeit via different generating sets: N 1 is the

B-net of H1 ¼ hQR;RPi with constructible fundamental

region �H1
¼ � [ R�, while N

0

1 is the W-net of

H1 ¼ hQR;PQi with constructible fundamental region

�0H1
¼ � [Q�. In this case, HN 1;N

0
1

is H1 itself and so we

choose the motif �N 1;N
0
1

to be the patch of ON 1;N
0
1

contained

in �H1
shown in Fig. 11(d). Note that there are three weaving

points, say p1, p2 and p3, on �N 1;N
0
1
, but p1 and p3 are identi-

fiable under H1 as p1 ¼ RQðp3Þ and RQ 2 H1. A resulting

weaving on ON 1;N
0
1

is given in Fig. 12(a). In Fig. 12, we also

give some weavings on the other mixed overlapping nets given

in Fig. 10.

6. Outlook

In this study, the authors developed in graph-theoretic terms a

methodical construction of weavings from combinatorial

objects called nets defined on a colored tiling of the plane. It

was shown that the methodology yields nets that are simple,

connected infinite graphs. The union of these nets called an

overlapping net is considered to form a weaving. Furthermore,

the authors introduced the construction of mixed overlapping

nets, which yield more general and fascinating weavings.

The procedure presented in this study is relevant because it

provides an algorithmic approach to constructing and catalo-

ging weavings, which may be useful in understanding the

complex architecture of the molecular-scale weavings in

MOFs and in covalent organic frameworks. Furthermore, the

resulting weavings are of interest because they consist of a

symmetric net, and symmetric nets, among other things, are

important in the formation of MOFs (Hyde et al., 2016).

In the next part of the study, we are looking at extending the

definition of B- and W-vertices to include more points other

than the centroids of the B- and W-patches. Another goal is to

consider constructing nets, (mixed) overlapping nets and

weavings from n-colorings of triangle tilings for n> 2. More-

over, we also seek to investigate the properties of the weavings

constructed from the methodology. A notion of equivalent

weavings has been developed by the authors in a separate

paper, and an investigation on the equivalence of weavings on

(mixed) overlapping nets is a consequent goal. Finally, the

ultimate goals of this research project are to explore which of

the resulting weavings are equivalent to the molecular-scale

weavings of coordination networks, and to use these weavings

to construct three-periodic patterns using the methodology

given in Ramsden et al. (2009).
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