
Ateneo de Manila University Ateneo de Manila University

Archīum Ateneo Arch um Ateneo

Department of Information Systems &
Computer Science Faculty Publications

Department of Information Systems &
Computer Science

2014

A Mobile Authoring Tool for AR Content Generation Using Images A Mobile Authoring Tool for AR Content Generation Using Images

as Annotations as Annotations

Ma. Mercedes T. Rodrigo
Ateneo de Manila University, mrodrigo@ateneo.edu

Follow this and additional works at: https://archium.ateneo.edu/discs-faculty-pubs

 Part of the Computer Sciences Commons

Custom Citation Custom Citation
Santos, M. E. (2014). A Mobile Authoring Tool for AR Content Generation Using Images as Annotations.
Philippine Information Technology Journal.

This Article is brought to you for free and open access by the Department of Information Systems & Computer
Science at Archīum Ateneo. It has been accepted for inclusion in Department of Information Systems & Computer
Science Faculty Publications by an authorized administrator of Archīum Ateneo. For more information, please
contact oadrcw.ls@ateneo.edu.

https://archium.ateneo.edu/
https://archium.ateneo.edu/discs-faculty-pubs
https://archium.ateneo.edu/discs-faculty-pubs
https://archium.ateneo.edu/discs
https://archium.ateneo.edu/discs
https://archium.ateneo.edu/discs-faculty-pubs?utm_source=archium.ateneo.edu%2Fdiscs-faculty-pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=archium.ateneo.edu%2Fdiscs-faculty-pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:oadrcw.ls@ateneo.edu

A Mobile Authoring Tool for AR Content Generation Using
Images as Annotations

Jayzon F. Ty
Department of Information Systems
and Computer Science, Ateneo de

Manila University
Katipunan Avenue, Loyola Heights

Quezon City, 1108 Philippines
jayzon.ty@gmail.com

Ma. Mercedes T. Rodrigo
Department of Information Systems
and Computer Science, Ateneo de

Manila University
Katipunan Avenue, Loyola Heights

Quezon City, 1108 Philippines
mrodrigo@ateneo.edu

Marc Ericson C. Santos
Graduate School of Information

Science, Nara Institute of Science and
Technology

8916-5 Takayama, Ikoma
Nara, 630-0192 Japan

chavez-s@is.naist.jp

ABSTRACT
Augmented Reality (AR) is a technology that allows the
superimposition of virtual objects onto the real world
environment. Various fields, such as education, medicine, and
architecture, have started adapting AR technology. However,
developing AR applications, along with their contents, requires a
specific skillset, which limits the number of AR-based
applications that can be developed. Various authoring tools are
available for desktop systems to ease the development of AR
applications and content, yet only few attempts have been made to
develop these kinds of tools for mobile systems. This paper
describes a mobile application that allows users to author content
for AR viewing using 2D images. Furthermore, the tool allows
users to produce and to edit AR content on the spot. After the
application was developed, a usability test was conducted with
eight teachers in order to assess the difficulty of using the
application. The user testing showed that the application
developed was generally easy to use, and that further addition of
features can improve the application.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems; H.5.1
[Information Interfaces and Presentation (e.g. HCI)]:
Multimedia Information Systems---Artificial, augmented, and
virtual realities

General Terms
Human factors

Keywords
augmented reality, authoring tool, mobile application

1. INTRODUCTION
1.1 Context of the Study
Augmented Reality (AR) is a technology that allows the

superimposition of virtual objects onto the real world environment
through the use of special devices. Using a mobile phone or tablet,
an AR application allows users to see the virtual objects on top of
the real world environment, thus creating the illusion that the
virtual object is part of the real world environment [1] [2] [14].
ARAR must be differentiated from Virtual Reality (VR). Virtual
Reality, in contrast to AR, completely immerses the user inside a
virtual environment, effectively replacing the real world
environment with a virtual one. In general, ARAR uses virtual
objects to enhance the perception of the user, while Virtual
Reality uses virtual objects to replace reality. This study will
focus on the use of AR technology.

As AR developed over the past few years, it has begun to make its
way into various fields of knowledge. In the medical field,
Seilhorst et al. [13] created an AR Delivery Simulator for Medical
Training in order to provide an almost realistic birth simulator for
the purpose of training medical students in the birth-giving
procedures. This allowed medical students to gain experience
even without performing the actual procedure itself. In the field of
education, Billinghurst et al. [3] developed the “Magic Book”, an
AR driven story book wherein users can see the story book come
to life in the form of animated virtual objects sitting on top of the
book.

One of the drawbacks to AR lies in the difficulty associated with
creating the application and the content. Creating an AR
application is a long and non-intuitive task [6]. It requires
knowledge of programming languages as well as a combination of
graphics programming and computer vision to determine where,
when, and how to render a virtual object. In order to solve this,
programming libraries such as HITLab’s ARToolkit are provided
to developers in order to ease the development of AR
applications. These libraries contain the necessary
implementations needed to make AR work, and thus developers
only need to reuse these libraries to develop their applications.
This shifts the difficulty from developing the application to
actually creating the content itself. AR content, on the other hand,
is usually registered in 3D, which requires tools that allows the
creation of content in 3D space, usually separate from the actual
application itself. Furthermore, compatibility is still a big concern,
considering that the content is created outside the application, and
that importing of the content to the application is necessary.
Furthermore, most mobile devices don’t recognize file formats for
3D objects, and thus, accessibility is another concern in terms of
the content.

In order to address these issues, this study aims to provide an AR
authoring tool that allows users to produce AR content easily and

quickly without worrying about compatibility between the content
and the application. To achieve this, standard 2D images
registered in 3D space will be used as content instead of 3D
virtual objects. This is based on the rationale that 2D images are
widely accessible and at the same time easy to create, given that
various devices have the capability to recognize different image
formats, and to allow users to use images that they have produced
as content. Furthermore, the application must be developed for a
mobile device, which will allow users to create and to edit the
content on the spot. In effect, everything is happening on the
mobile device itself.

The authoring tool is the result of an internship program offered
by the Interactive Multimedia Design (IMD) laboratory of the
Nara Institute of Science and Technology and is built around
another study by the third author of this paper. The study pointed
out the lack of authoring tools for AR content which can be easily
used by educators to assist in their discussions. For this purpose,
this study will focus specifically on developing the authoring tool
with the educational field in mind, though the scope of usage of
the application is not strictly tied to the field of education per se.

1.2 Research Objectives
As a summary of the points previously discussed, this project
aims to provide a mobile authoring tool for the creation of AR
content through the use of 2D images as content, i.e. an
application that allows users to easily and quickly create their own
AR content by using widely available existing materials in the
form of images in order to annotate the real world environment.
By providing an application that is simple for users to use, the
study further aims to improve the chances of being able to use AR
technology in the classroom setting.
The study aims to answer the following question: Will the
authoring tool provide a simple interface for users to produce their
own AR content, and further encourage them to use AR in the
field of education? The following sub-questions will aid in
answering the main question of the project:

1. What functions should the authoring tool support to
enable users to create their own AR content?

2. How easy will the authoring tool be for potential users
to use?

1.3 Scope and Limitations
This study focuses primarily on the development of an authoring
tool that allows users to author AR content using 2D images. As
for the target device, the application is developed with the Apple
iPad as the primary target device, and thus the features that the
application can support is also subject to the limitations of the
device, as well as the libraries used in the development of the
application.

The authoring tool will contain the following features in order to
allow the users to create simple AR content:

1. The ability to use any 2D image from the device as AR
content

2. The ability to perform basic affine transformations onto
the image, such as translation, rotation, and scaling
using the device’s touch screen capabilities

3. The ability to switch to another marker in order to edit
the image associated with that marker

4. The ability to save and load previous works done by
users (images and markers used, association between

marker and image, and the individual images’ position,
rotation, and scaling factor)

Although the application may have a wide variety of use cases,
the application was developed primarily for educational purposes,
and thus the target users included teachers, who will potentially
author AR content in order to assist their lessons, and also
students, who can potentially use AR to further enhance their
learning experience.

1.4 Significance of the Study
AR in education has proven to be effective based on the different
AR applications that have been produced over the past few years.
According to Kerawalla et al. [8], “AR has the potential to engage
and motivate learners to explore material from a variety of
differing perspectives, and has been shown to be particularly
useful for teaching subject matter that students could not possibly
experience first-hand in the real world.” Dunleavy et al. [4]
studied about how teachers and students describe their experience
with using AR in education. The study reports that AR was found
by both teachers and students to be highly engaging, and that its
use also promoted collaborations among students. Shelton et al.
created an AR application for teaching earth-sun relationships in
terms of axial tilt and solstices, and concluded that the application
provided a great way of presenting complex visualizations as
compared to that of a desktop interface [8] [12].

However, even though AR proves to be highly effective in the
field of education, producing AR applications for education is a
lengthy process. This limits the amount of AR based applications
that can be developed in a certain period of time, and at the same
time the amount of content that can be provided to its potential
users. Thus by creating a simple AR authoring tool that dedicated
educators can use, using and encouraging the use of AR in the
classroom setting will become more feasible. Also, by
implementing a successful authoring system, it can serve as a
foundation for future improvements onto the system, and can
encourage more researchers and developers to delve into
developing more powerful applications that can eventually
overcome the obstacles of bring AR to the classroom setting.

2. RELATED LITERATURE
2.1 Desktop-based AR Authoring Tools
The ARToolkit library is a software library built using the C and
C++ programming language that provides developers with the
necessary tools to incorporate AR onto their applications. The
ARToolkit library contains the necessary functions in order to
calculate the viewpoint of the user in real-time in order to
correctly display the virtual objects onto the real world. The
ARToolkit library can be integrated onto various devices, such as
head-mounted displays, desktop computers, and even mobile
devices, such as smartphones and tablets. Currently, the
ARToolkit library is widely used for various AR applications, and
has proven to be successful in allowing programmers to generate
their own AR content.
One limitation to the ARToolkit library is that it only provides
developers with the fundamental functions in order to add AR
capabilities onto their applications. Creating the actual content
that will be viewed through AR requires a separate 3D modeling
software. The developer will then need to tweak the library in
order to make it compatible with the 3D models that the
application will be using.

A similar study, the ARLab [11], is a library of its own that allows
programmers to create AR content. The library abstracts the

underlying techniques used in AR such as computer vision, and
instead provides programmers methods to easily access the data
collected and processed by the library. Furthermore, the ARLab
also allows the programmers to easily extend these abstractions
with their own modifications in order to suit their needs. Just like
the ARToolkit library, the content has to be made and exported
from a different application that handles generating 3D content to
be used for overlaying onto the real world.

The ARToolkit and ARLab libraries are system-level AR
authoring libraries, which are primarily for users who have
specialized knowledge in programming. However, there is also
the need to allow non-programmers to produce their own AR
content. Thus, high-level AR authoring interfaces were created in
order to address this problem.

DART (Designer’s AR Toolkit) [10] is an application that was
built on top of Macromedia Director, which is considered the
standard for multimedia content creation, and aims to provide
designers an AR authoring tool that enables them to work on the
content directly, rather than relying on collaborating with
developers to produce the content. The application was built using
the Lingo programming language, the underlying scripting
language of Macromedia Director, which makes it easier to
integrate the functionalities onto Macromedia Director itself, and
to allow designers to add additional functionalities onto the
system.

The DART toolkit has been used for teaching AR classes, and has
also been distributed to a small number of designers for
professional use. The initial feedback for the application was
positive, but the sample size was still too small to give a suitable
gauge for the usability of the system.
Furthermore, the application is focused on providing an authoring
interface for professional designers working on big projects. This
system also assumes prior knowledge of Macromedia Director,
which may not be familiar to many users.
To lower the prior knowledge requirement, Haringer et al. [7]
developed PowerSpace, an application that transforms Microsoft
PowerPoint slides into content that is viewable through AR. The
application first exports the Microsoft PowerPoint slides into
XML format. PowerSpace uses this XML file in order to arrange
the 2D elements in 3D space using a built-in editor. Finally, a
built-in viewer is used in order to view the final output for
evaluation and use.

One limitation of this system is that it is also subject to the
limitations of Microsoft PowerPoint in terms of the content the
user can produce. Furthermore, this system has only been tested in
the field of automotive industry, and thus was developed based on
that context. Extending this system to fit other applications
requires substantial internal modifications.

2.2 Mobile-based AR Authoring Tools
AR authoring tools for desktop systems, though powerful, do not
address an important feature in terms of authoring AR content,
which is the ability to author content in any location and time, and
to be able to edit the content instantly. Mobile AR authoring tools
can serve as a solution to this problem. However, there is still
little research done on mobile AR authoring tools. One of the few
initiatives done was by Guven et al. [5]. Their system runs on a
tablet PC, and is meant to be an authoring tool for mobile AR
systems (MARS). The application supports three modes for
authoring AR content: freeze-frame, free-n-move, and freeze-n-
link. In freeze-frame, the application allows the user to capture a
screenshot of the real world environment, to perform the

annotations using that screenshot, and later mapping the result
back onto the real world. The free-n-move mode allows the user
to easily move a group of virtual objects around the world while
maintaining organizational integrity. Finally, freeze-n-link mode
allows two separate capture screenshots taken using freeze-frame
to be linked with one another.
Langlotz et al. [9] developed another mobile AR authoring tool
which also allows users to produce AR content in place, without
the need for prior preparations. The application allows users to
specify a custom target that the user desires to map the virtual
objects onto. The application does this by letting the user draw a
rectangle around the area to be used as target. Then, after the
target has been selected, the user can author his/her own AR
content by first drawing the 2D shape onto the screen through the
touch screen interface. The application then handles the mapping
of the 2D shape generated by the user into 3D space, and also
transforming the 2D shape into 3D shape. The application also
allows the user to perform affine transformations onto the content,
such as translation, rotation, and scaling. The application also
allows the user to apply textures onto the 3D shape generated by
the application.

3. SYSTEM DESIGN/DEVELOPMENT
3.1 Development Tools
This section describes the tools that were used in order to develop
the authoring tool for AR Content, such as the development
environment that the application was built on, and the libraries
and programming languages that were used in order to implement
the different functionalities of the application.

3.1.1 Xcode
The integrated development environment (IDE) that was used for
creating the application is Xcode, which was the standard IDE for
developing applications for both iOS, the operating system of
Apple’s mobile devices, and MacOSX, the operating system of
Apple’s desktop systems. The version used was Xcode 4.6.2,
which was the latest version at the time of writing, and the target
version of the iOS was version 6.1, which was also the latest
version of the iOS at the time of writing.

3.1.2 Cocoa Touch Framework
The Cocoa Touch Framework is the set of programming libraries
required to create applications for iOS devices. The framework
also provides an easy way for programmers to create user
interfaces using different Graphical User Interface (GUI) elements
such as buttons and text fields, and also provides support for touch
screen support using the multi-touch gesture libraries. The library
also provides access to the built-in hardware of iOS devices, such
as the camera, networking, and graphics processor using the built-
in functions of the library. The framework is built using the
Objective-C programming language, which makes it easy to
incorporate C or C++ code onto the application.

3.1.3 ARToolkit Library
The authoring tool uses an AR marker in order to determine
where to render the image, and thus, the ARToolkit library was
incorporated into the application in order to facilitate the tracking
of the AR marker. The ARToolkit library abstracts the computer
vision techniques needed to determine where and how to render
the image based on the position of the viewer, and his/her
perspective. An open-source version of the ARToolkit is available
on their homepage. However, the source code of the ARToolkit
library that the application used was directly taken from the

Interactive Media Design Lab from the Nara Institute of Science
and Technology. Thus, future changes in the library might not be
available in the open-source version.

3.1.4 OpenGLES Library
OpenGLES is a subset of the OpenGL library, which is one of the
most commonly used library for graphics programming. The
OpenGLES library is specifically optimized for graphics
programming in mobile systems. The version that the application
will be using is OpenGLES 1.0. The OpenGLES library was used
in order to render the 2D image onto 3D space, which in this case
is the real world environment. The library was also used in order
to facilitate the affine transformations that can be performed onto
the 2D image, such as translation, scaling, and rotation, using the
built-in functions that the OpenGLES library offers.

3.2 Building the User Interface
The user interface of the whole application was created using the
interface builder tool that is included with Xcode. The application
was made using the single-view application template provided.
The user interface is split into two parts: edit mode and view
mode. Edit mode serves as the authoring part of the application,
wherein the user can load an image from the device, perform
modifications onto it, and choose which markers to use. View
mode, on the other hand, allows the user to view the image
through AR, and apply image effects onto the image. This section
provides an explanation of the different functionalities of the
application that can be accessed through the user interface.

3.2.1 Accessing Images from the Device
2D images are the main resources that the user must use in order
to start authoring content. Thus, a means to access the images
from the device is required. The UIImagePicker class, which is
iOS’ built-in class for accessing the images from the devices, was
then used for this purpose. One thing to note, however, is that
according to the Apple iOS documentation, using the
UIImagePicker class on the iPad requires the class to be displayed
using a UIPopover class, which handles the display of popovers.
Furthermore, the UIImagePicker class requires a delegate class,
which implements the protocol (or interface) defined by the
UIImagePicker class in order to specify what happens when the
user confirms the selection of the desired image. The following
code snippet shows the implementation of the delegate function
that is called when the user successfully chooses an image that
he/she intends to use:
function didSelectImage
 image <- get selected image
 resize image to a square
 imageData <- extract pixel data from image
 store imageData to marker
end function
Based on the code snippet above, one important thing to note is
that when the image has been successfully selected by the user,
the image needs to be resized to a square. This is done in order for
the application to render the image properly. This restriction
reflects the limitation of the OpenGLES 1.0 library, wherein the
image to be rendered must be a square. When the image has
different lengths for each of its sides, the library will refuse to
render the image. In this case, the image is being resized to 512 x
512 pixels. Another thing to note in the code is the
“UIImagetoPixelData” function call. This function will be further
explained in secion 3.3.1.

3.2.2 Gestures
After the image has been loaded from the device, the user is now
able to edit it by performing basic affine transformations to it. One
option given to the user to perform this is through performing
gestures in the device’s touch-enabled screen. The Cocoa Touch
framework provides the GestureRecognizer class which handles
the gestures made by the user onto the screen. For this application,
the PanGesture, PinchGesture, and RotateGesture class was be
used. Each of these classes are protocols, and the application
needs to define what happens when each of these gestures are
detected.

Whenever the device detects that the user has performed a
panning gesture, a certain function is called, which contains the
process that the application performs in order to move the image
around. The code snippet below shows the implementation of the
PanGestureRecognizer function:
function panGesture
 if not in edit_mode or marker is not detected
 exit
 trans <- get translation vector
 normalize trans vector
 z <- get distance of camera from marker
 translate image using the trans vector
end function
Based on the code above, translation is done by first getting the
direction of the gesture performed by the user on the screen. The
direction is then normalized, and is given a speed factor based on
the distance of the iPad from the marker, which is given by the
getZ() function. The direction vector is then added to the current
position of the image, which makes the image move to the
direction that the user makes in his panning gesture.
The RotateGesture and PinchGesture work similarly, such that the
class provides the scale factor and the rotation factor based on the
gesture made by the user. For the pinch gesture, the value
becomes smaller when the two fingers of the user come together,
and become larger when the two fingers of the user come apart.
For the rotate gesture, the value goes to the positive direction
when the user rotates his/her fingers clockwise, and the value goes
to the negative direction when the user rotates his/her fingers
counter-clockwise. These values will be passed as a variable to
the OpenGL system, and the scaling and rotation of the image is
applied using the glRotate() and glScale() functions of the
OpenGL library, which handles the rotation and scaling
respectively.

3.3 System-level Implementations
This section describes the relevant functions that run behind the
user interface, as well as the variables and parameters that needed
to be considered in order to have the application working
properly, and to have similar results for replication purposes.

3.3.1 UIImage to RGBA8 Pixel Data
As mentioned in Section 3.3.1, it is required to specify what
happens when the user confirms the selection of the image. After
the image is loaded from the device, it must be pre-processed in
order to pass the image data onto the ARToolkit library. The
image must first be converted into raw byte data to allow the
ARToolkit library to render the actual image onto the screen.
Aside from rendering, this raw byte data will also be used for
storing the image, essentially allowing the application to load an
image even if the image is not physically present in the device
itself. The following code snippet shows the implementation of
the conversion from a UIImage to its RGBA pixel data:

function UIImageToPixelData
 imageSize <- get image size
 determine color format of image
 initialize imageData array containing pixel
data of image
 remove white background in the image by
adjusting the alpha values of the pixels
end function
In order to convert the UIImage data to an array of RGBA8
format pixel data, the CGBitmapContext class was used, which
allows the application to retrieve the raw byte data of the image
contained in the UIImage object. The first step is to create a
CGContext by using the function CGBitmapContextCreate(). One
thing to note about the function is the last parameter, which
indicates the information regarding the bitmap data. The
application will supply the value corresponding to pre-multiplying
the alpha bit at the end of each byte to the last parameter of the
function in order to tell the function to create an array of RGBA
format pixel data. This value is specifically important in order to
preserve the alpha data of the image. After creating the context,
the image must be rotated along the x-axis in order to display the
image correctly in OpenGL. After setting up the context, the array
of pixel data can be retrieved from the CGContext object using
the function CGBitmapContextGetData(). This array of pixel data
is particularly important when using the OpenGL library to render
the image onto the screen, due to the limitation of the library
itself. Finally, in order to remove the white background of the
image, a naïve solution was used in order to do so, which is to set
the alpha byte of the pixels that are close to the color white to
zero, which effectively makes it transparent. A variable containing
the threshold can be adjusted, which determines which pixels are
close to the color white.

3.3.2 Image Rendering
After converting the image into raw byte data, the ARToolkit
library is now able to process the image for rendering. The first
step in rendering the image is to get the current frame of the video
input device. The iOS library provides a class that allows access
to the data from the video input device. The image data provided
by this class is represented as an array of unsigned 8-bit integers,
represented in BGRA format. Due to this, the ARToolkit library is
also configured to accept BGRA format images in order to
correctly process the image.
The next step in rendering the image is to know where to render
the image. To handle this requirement, a built-in function in the
ARToolkit library is used, which returns a value indicating
whether the marker is detected in the current frame of the video
input or not. When the marker is detected, ARToolkit
automatically calculates the user’s viewpoint, and updates the
transformation matrix. This transformation matrix gives the
coordinates of the position where the image should be rendered,
the scaling factor of the image based on how far the user is from
the marker and how big the marker is, and the rotation factor of
the image, based on the perspective of the user.
After determining the necessary information, the next step is to
render the image itself in the screen. The following code snippet
shows how the image rendering was implemented:
function drawTexture(imagePixelData)
 enable OpenGL textures
 initialize an array of vertices for a square
 attach imagePixelData as texture for the
square
 render the square with the image as texture
end function

The OpenGL library is not capable of drawing the image directly
onto the screen. However, the library is capable of drawing basic
shapes onto the screen, and applying image textures onto these
shapes. This technique is called Texture Mapping, and the
application will be using this technique in order to display the
image onto the screen. Texture mapping works by first drawing
the shape where the texture will be applied. Since the application
will be using images, the shape to be drawn in OpenGL will be a
2D square mapped into a 3D coordinate frame. In preparation for
drawing the 2D square, the coordinates of the square must be
provided as an array of vertices. Order matters in the array such
that the first element in the array will be drawn first. Since the 2D
square will be drawn using a triangle strip, the coordinates must
be arranged in such a way that the coordinates produce 2 triangles.
For the application, the square will be drawn by first drawing the
lower-left, lower-right, and upper-left vertices in order to produce
the first triangle, and finally drawing another triangle using the
lower-right, upper-left, and upper-right vertex in order to finish
the triangle strip.

After drawing the 2D square, the next step is to apply the image as
texture for the 2D square. The OpenGL function glTexImage2D()
handles the storing of the texture data onto the OpenGL system.
First, the image must be transformed into an array of pixel data,
which is done when the user loads the image from the device.
Since the array of pixel data is represented in RGBA format, the
texture must also be stored in RGBA format. After storing the
texture data, the next step is to provide the order as to how the
texture must be drawn by providing the texture coordinates. The
texture will start drawing from the lower-left corner, lower-right
corner, upper-left corner, and finally the upper-right corner. The
texture data must also be bound onto the square shaped declared
earlier, using the OpenGL function glBindTexture().

The final step in rendering the image is to draw the 2D square
with the texture data inside. This is done by using the OpenGL
function glDrawArrays(), with GL_TRIANGLE_STRIP as a
parameter in order to tell the OpenGL system to draw the shape
using triangle strips.

3.3.3 Saving and Loading Profiles
After the user successfully authors the content, the application
must be able to save the work for future use. The iOS library
provides the option of using property lists for storing persistent
data onto the device. Property lists works in the same manner as a
hash map, which requires supplying a key that maps to the actual
data to be stored onto the device. One limitation to using property
lists is the requirement that the data be stored in one of the built-in
iOS objects that conforms to the NSCoding protocol. Considering
this limitation, data regarding the image are saved in the following
format: Pixel data of the overlaid image is saved using NSData
created from an array of unsigned 8-bit integers; the index of the
marker used, and the dimensions of the overlaid image, e.g. width
and height, scale factor, rotation factor, and position, are saved
using NSNumber with integer values for the width and height of
the image and the index of the marker used, and float values for
the scale and rotation factor, and also the position. All these data
are then stored in an NSDictionary object, which works exactly
like a hash table. Each marker is represented by a separate
NSDictionary, thus making it a total of 6 NSDictionary objects for
each profile. In light of this, a profile is defined as an array of
NSDictionaries, which represents each individual marker. In order
to identify unique profiles, a profile name will be supplied by the
user.

3.4 User Interface

When the application initially starts, the user is taken directly into
the “edit mode” screen, which is the screen where most of the
authoring happens. Figure 1 shows a screenshot of the user
interface of the application.
One of the core features of the application is the ability to get an
image from the iPad and use it as AR content. Thus, a button at
the lower right corner of the screen named “Change Image…” is
provided in order to allow the user to browse through the images
from the iPad device, and to choose the desired image to be used
as AR content.

Another core feature of the application is the ability to perform
basic affine transformations to the 2D images being rendered.
Thus, interfaces were provided for the user to be able to perform
these tasks. Positioning of the 2D image is done by performing a
pan gesture (or dragging motion) on the screen. When the user
performs a pan gesture to a specific direction, the image will
follow this direction as well. At the time of writing, there is a
slight issue with regards to this functionality. When the screen and
marker coordinate planes are the same, translation works as
intended: dragging along the x-axis moves the image along the x-
axis, and dragging along the y-axis moves the image along the y-
axis. However, when the coordinate planes are different,
translation is made relative to the coordinate plane of the marker.
When the user drags along the x-axis of the screen, the image
moves along the x-axis of the coordinate marker, which may not
necessarily be horizontal in the perspective of the user. The same
effect happens when dragging along the y-axis.

Scaling and rotation of the 2D image can be done in two ways:
either through gestures or through the use of the stepper buttons
that are present in the screen that correspond to scaling and
rotation. Steppers are user interface controls that allows
incrementing or decrementing values using a set of buttons that
contains a button for both functionalities. Originally, these
steppers were not present in the application. However, this
addition was done in line with the results of the usability test,
wherein users had a hard time using the gestures in order to
perform scaling and rotation. Further discussion of feedback from
the participants will be done in the next section.

Currently, the application only recognizes a fixed number of
markers. The user is able to work on one marker at a time, which
is enabled by the “Change Marker” button. When the user wants

to change the image associated to a specific marker, the user must
first select the marker through the “Change Marker” button. When
the user wants to perform modifications on an image associated
with another marker, the user first needs to select the
corresponding marker, then perform the modifications from there.
As for the marker recognition, the application can detect multiple
markers in the screen at once. For the detected markers, the
images associated with each of them are rendered in the screen.

Saving a profile is done through the “Save” button located at the
bottom left part of the screen. When the user touches the “Save”
button, the application asks for a profile name in order to
distinguish it from other profiles. After giving a profile name, the
application saves the profile onto the system, which can be loaded
for future use. Saving with a profile name that is already in use
will overwrite the data associated with the previous profile,
replacing it with the data in the new one. Loading a profile can be
done through the “Load” button, which is located beside the
“Save” button. Finally, deleting a profile can be done through the
“Delete” button, which is beside the “Load” button. This allows
the user to delete a certain profile in the application.

Lastly, View Mode, which can be toggled using the toggle button
in the upper left corner of the screen, simply removes the buttons
presented in Edit Mode to give a wider, unobstructed view of the
content and the real world environment. Authoring functions are
also disabled in order to avoid accidental modifications done to
the system. During View Mode, a “Load Profile” button at the
upper right corner of the screen is provided to allow users to still
load a specific profile from the application for viewing purposes.
As for the performance of the application, when the application
initially starts, it runs at a framerate of 30 frames per second,
which is the normal framerate for applications in the iPad. For the
first few images that the user renders in the screen, approximately
around 2 images rendered in the screen simultaneously, there is no
noticeable change in the framerate of the application. However, as
the number of images rendered in the screen increases, there is a
noticeable drop in the framerate of the iPad, from 30 fps to around
20~25 fps. A breakdown of the different processes that are
happening per frame may provide an explanation for the drop in
performance as the number of images go up:

1. Capturing the current frame, and processing the frame
to detect the markers

2. Searching through which markers are detected by the
iPad

3. Updating the transformation matrix of each detected
marker

4. Rendering the images that correspond to the markers
detected

5. Drawing the processed frame onto the screen of the iPad

Based on the list, there are three processes which can be
computation-heavy=. Processing the frame to detect the markers
involves a large number of operations in order to extract relevant
data from the frame. Another computation-heavy process is the
rendering of the image onto the frame. For each marker detected,
the application needs to render the image onto the frame, and
considering the worst-case scenario wherein all markers are
detected in the screen, the application needs to render the image
onto the frame 6 times, which is processor-intensive in nature.
Finally, drawing the processed frame onto the screen of the iPad
also takes a lot of resources to perform. Having six images in the
screen at a time may still be tolerable, but in the event that the

Figure 1. User interface of the application

number of markers increases, the performance may decrease,
adversely affecting the usability of the application.

4. USER TESTING AND FEEDBACK
After the development of the application, a usability test was then
held with the participation of eight (8) teachers from the Ateneo
Grade School.. The testers were provided an iPad with the
application installed and were asked to perform two tasks which
involved using the application’s features. For the first task, the
participants were asked to associate different images to different
markers such that the name of the image starts with the letter that
is shown in the marker. For the second task, the testers were asked
to choose an image of a body part from the iPad, and to align the
image of the body part onto its approximate location in the
volunteer’s body, using scaling or rotation as necessary. A think-
aloud protocol required the testers to express their thought process
verbally while performing the tasks, enabling the researchers to
determine specific problems or difficulties that the user
encountered. At the end of each task, the testers were asked to rate
the difficulty in using the functionalities provided by the
application. A 5-scale Likert scale was used in order to assess the
testers’ response regarding their experience in using the
application, with 1 being the negative extreme, while 5 being the
positive extreme.
Table 1 shows the results of the usability test. A score of 1
represents the negative extreme, while 5 is the positive extreme.

Table 1. Usability Test Results

General
Have experience w/ tablets 8 out of 8

Knows AR prior to testing 1 out of 8

Task 1 Average (out of 5)

Expected difficulty 3.625

Difficulty performing the task 4.625

Choosing an image 4.875

Changing markers 4.625

Task 2 Average (out of 5)

Expected difficulty 4.125

Difficulty performing the task 4.375

Translation 3.75

Scaling 3.25

Rotating 2.625

Overall Average (out of 5)

Interface navigation 4.375

Application learning curve 4.5

Terminology clearness 4.375

Overall experience 4.25

Table 1 describes the result of the questionnaire answered by the
testers which shows the difficulty rating of the application based
on the scores given by the testers. All 8 participants have
experience with using tablets, yet only 1 out of 8 of the testers had
knowledge of AR prior to the usability test.

For both tasks 1 and 2, “expected difficulty” refers to how easy or
how difficult the tester expect the task to be, while “difficulty
performing the task” refers to the actual difficulty in doing the
task given to the tester. For task 1, “choosing an image” refers to
the functionality of the application which allows the tester to
select images from the iPad’s image library, while “changing
markers” refers to the functionality of the application which
allows the tester to switch control between different markers. For
task 2, “translation”, “scaling”, and “rotation” refer to the
functionality of the application that allows the tester to perform
modification onto the image such as its position, its size, and its
orientation. For both tasks 1 and 2, the higher the number, the
easier the task is.

For the overall experience, “interface navigation” refers to the
interaction between the user and the user interface of the
application, “application learning curve” refers to the amount of
time required in order to learn the basic functionalities of the
application, “terminology clearness” refers to the accuracy of the
terminologies used in the user interface, and “overall experience”
refers to the overall difficulty of using the application. For
interface navigation, the higher the number is, the easier it is for
the tester to navigate the user interface. For terminology clearness,
the higher the number, the more accurate the terminologies are.
Finally, for the learning curve and the overall experience, the
higher the number, the easier the application is to use.
Based on the results, the most problematic aspect was performing
the basic modifications to the image (translation, scaling and
rotation). The most common feedback from the testers involved
the difficulty that they encountered when trying to perform the
touch gestures in order to perform scaling and rotation. A
common suggestion was to add buttons to perform the scaling and
rotation. Another feedback was given with regards to the constant
need to use the “Change Marker” button in order to toggle
between the images. A recommendation was to provide the ability
to select the image by tapping on it, and from there perform
modifications onto it.
Aside from the ratings and the suggestions given by the testers,
some possible use cases were also mentioned by the participants.
One of them was to use the application in order to associate an
illustration of a certain location for each marker, effectively
creating a map when multiple markers are displayed in the screen.
Another idea was more of a suggestion for future iteration of the
application, wherein the application produces positive or negative
feedback based on the image associated to the marker by the user.
The example was similar to the nature of the testing, wherein the
testers were asked to associate images that start with the letter that
is printed in the marker. Instead of just accepting any image, the
application must now enable users to incorporate logic onto the
application, such that when the image associated to the marker is
wrong, the application will produce negative feedback.

5. SUMMARY AND RECOMMENDATION
This study aimed to develop an AR authoring tool for mobile
systems that allowed users to easily create their own AR content
without the need for prior programming background, and the need
for external tools in order to use the application. The study
formulated two questions in order to assist the development of the
authoring tool:

1. What functions should the authoring tool support to
enable users to create their own AR content?

2. How easy will the authoring tool be for potential users
to use?

For the first research question, based on the functionalities
implemented onto the application, the feedback gained from the
testers, and the fact that the application makes use of 2D images
as its main source of content, it can be concluded that the primary
functionalities that the authoring tool needed was first, the ability
to choose the image that the user intends to use as AR content,
and second, the ability to perform basic affine transformations
onto the image, such as translation, scaling, and rotation. Without
these core functionalities, the application would not be able to do
its intention of providing users with the tool to create AR content
through the use of 2D images. Aside from these functionalities,
offering the users the ability to program simple interactions with
the AR content is also important to consider, since it opens up a
wide variety of options to the content that the user can create. An
example of this may include allowing users to dictate what
happens when the contents interact with each other.

For the second research question, based on the results gathered
from the user testing, and the feedback from the testers, it can be
concluded that the authoring tool that was developed for this study
was able to provide a simple interface for creating AR content.
With an average score of 4.25 out of 5 in the aspect of overall
experience, with 1 being very difficult and 5 being very easy, the
application proved to be a straightforward application to use. The
authoring tool was also able to achieve its goal of being able to
create and edit AR content on the spot, without the need for
additional tools in order to do so.
Despite the overall success of the application in providing a
simple interface for creating AR content, there are still
improvements to the application that can be done in order to
further enhance the experience of the user in using the application.
One improvement that can be done to the application is fixing the
way the application handles the translation gesture. Currently, the
application is only able to optimally perform translation onto the
image when the orientation of the iPad is perfectly aligned to the
orientation of the image. When the iPad is slightly tilted, the
translation aspect does not work as expected. One possible
approach to this is tweaking the code for the translation
component such that the orientation of the iPad is taken into
account when performing the translation to the image. Another
possible point of improvement is the implementation of some of
the points mentioned in the related literature section, such as
freezing the frame to allow the user to edit the content without the
need to hold it in place. Finally, the application can be tweaked
such that the “Change Marker” button is no longer necessary.
Tapping on the image itself should be sufficient to select and to
edit the image as necessary.

As for possible additions to the application, one recommendation
will be the ability for the users to be able to define their own
markers. Currently, the markers are hard-wired onto the
application, effectively restricting the amount of content that the
users can produce. By allowing users to define their own markers,
the amount of content is now restricted to the limitations of the
memory of the iPad device itself. At the time of writing, the next
iteration of the application is already underway, with the
application being able to detect and save new markers onto the
system. However, further development is necessary in order to be
able to effectively use the application. Another possibility is to
tweak the application such that when a marker is detected, a set of
images is rendered instead of a single image. Another
recommendation would be the ability to render not only static
images but also play video files when the marker is detected. By
incorporating video capabilities onto the application, the variety
of content effectively widens. Finally, the application may be

further developed such that the need for using AR markers is
eventually removed, which allows users to create AR content at
almost any location, even without printing AR markers.

Aside from the development of the application, the usability test
also needs to be improved, due to the fact that the number of tasks
introduced for the usability test in this study is strictly limited, in
which the results might not reflect the real usability of the
application. Improvements may include adding more tasks for the
usability test, or by employing other kinds of testing in order to
measure the usability of the application.

6. ACKNOWLEDGMENTS
Our thanks to the Dr. Hirokazu Kato for the necessary library in
order to implement AR functionalities onto the application, for
providing concrete examples, which made the library easier to
learn, and for providing the internship opportunity which made
this study possible.

7. REFERENCES
[1] Azuma, R. T. A Survey of AR. Presence: Teleoperators and

Virtual Environments, 6 (4). 355-385.

[2] Azuma, R.T., Baillot, Y., Behringer, R., Feiner, S., Julier, S.,
and Mcintyre, B. Recent Advances in AR. IEEE Computer
Graphics and Applications, 21 (6). 34-47.

[3] Billinghurst, M., Kato, H., and Poupyrev, I. The
MagicBook—Moving Seamlessly between Reality and
Virtuality, Computer Graphics and Applications, IEEE, 21
(3). 6-8.

[4] Dunleavy, M., Dede, C., and Mitchell, R. Affordances and
Limitations of Immersive Participatory AR Simulations for
Teaching and Learning. Journal of Science Education and
Technology, 1 (18). 7-22.

[5] Guven, S., Feiner, S., and Oda, O. Mobile AR Interaction
Techniques for Authoring Situated Media On-Site.
IEEE/ACM International Symposium on Mixed and AR,
(Santa Barbard, CA, 2006), IEEE, 235-236.

[6] Hampshire, A., Seichter, H., Grasset, R., and Billinghurst, M.
AR Authoring: Generic Context from Programmer to
Designer. Proceedings of the 18th Australia Conference on
Computer-Human Interaction: Design: Activities, Artefacts,
and Environments, (Sydney, Australia, 2006), ACM, 409-
412.

[7] Haringer, M. and Regenbrecht, H. A Pragmatic Approach to
AR Authoring. Proceedings of the International Symposium
on Mixed and AR, (Washington DC, USA, 2002), IEEE
Computer Society, 237-245.

[8] Kerawalla, L., Luckin, R., Seljieflot, S., and Woolard, A.
Making it Real: Exploring the Potential of AR for Teaching
Primary School Science. Virtual Reality, 10 (3-4). 163-174.

[9] Langlotz, T., Mooslechner, S., Zollmann, S., Degendorfer,
C., Reitmayr, G., and Schmalstieg, D. Sketching Up the
World: In-Situ Authoring for Mobile AR. Personal and
Ubiquitous Computing, 16 (6). 623-630.

[10] Macintyre, B., Gandy, M., Dow, S., and Bolter, J.D. DART:
A Toolkit for Rapid Design Exploration of AR Experiences.
Proceedings of the 17th Annual ACM Symposium on User
Interface Software and Technology, (Santa Fe, New Mexico,
USA, 2006), 197-206.

[11] Roth, A. The Arlab and Cave Libraries: On Authoring AR
and Virtual Reality Experiences Using a Graphical
Programming Language. IEEE International Symposium on
Mixed and AR – Arts, Media and Humanities (ISMAR-AMH)
(Basel, Switzerland, 2011), 101-102.

[12] Shelton, B., and Hedley, N. Using AR for Teaching Earth-
Sun Relationships to Undergraduate Geography Students. AR
Toolkit, The First IEEE International Workshop (2002), 8.

[13] Sielhorst, T., Obst, T., Burgkart, R., Riener, R., and Navab,
N. An AR Delivery Simulator for Medical Training.
International Workshop on Augmented Environments for
Medical Imaging – MICCAI Satellite Workshop, 141 (2004).

[14] Van Krevelen, D., and Poelman, R. A Survey of AR
Technologies, Applications, and Limitations. International
Journal of Virtual Reality, 9 (2). 1-20

	A Mobile Authoring Tool for AR Content Generation Using Images as Annotations
	Custom Citation

	Microsoft Word - Paper 10 FINAL.doc

