Document Type

Article

Publication Date

2022

Abstract

Despite being one of the most used methods of virgin coconut oil (VCO) production, there is no metagenomic study that details the bacterial community shifts during fermentation-based VCO production. The identification and quantification of bacteria associated with coconut milk fermentation is useful for detecting the dominant microbial genera actively involved in VCO production which remains largely undescribed. Describing the constitutive microbial genera involved in this traditional fermentation practice can be used as a preliminary basis for improving industrial practices and developing better fermentation procedures. In this study, we utilized 16S rRNA metagenomic sequencing to trace the transitions in microbial community profiles as coconut milk is fermented to release VCO in two VCO production lines. The results show that difference in the microbiome composition between the different processing steps examined in this work was mainly due to the abundance of the Leuconostoc genus in the raw materials and its decline and transition into the lactic acid bacteria groups Weissella, Enterococcus, Lactobacillus, Lactococcus, and Streptococcus during the latter stages of fermentation. A total of 17 genera with relative abundances greater than 0.01% constitute the core microbiome of the two processing lines and account for 74%-97% of the microbial abundance in all coconut-derived samples. Significant correlations were shown through an analysis of the Spearman's rank between and within the microbial composition and pH at the genus level. The results of the present study show that the dynamics of VCO fermentation rely on the shifts in abundances of various members of the Lactobacillales order.

Share

COinS